1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
use crate::{
intrinsics,
iter::{from_fn, TrustedLen, TrustedRandomAccess},
ops::{Range, Try},
};
/// An iterator for stepping iterators by a custom amount.
///
/// This `struct` is created by the [`step_by`] method on [`Iterator`]. See
/// its documentation for more.
///
/// [`step_by`]: Iterator::step_by
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "iterator_step_by", since = "1.28.0")]
#[derive(Clone, Debug)]
pub struct StepBy<I> {
/// This field is guaranteed to be preprocessed by the specialized `SpecRangeSetup::setup`
/// in the constructor.
/// For most iterators that processing is a no-op, but for Range<{integer}> types it is lossy
/// which means the inner iterator cannot be returned to user code.
/// Additionally this type-dependent preprocessing means specialized implementations
/// cannot be used interchangeably.
iter: I,
step: usize,
first_take: bool,
}
impl<I> StepBy<I> {
#[inline]
pub(in crate::iter) fn new(iter: I, step: usize) -> StepBy<I> {
assert!(step != 0);
let iter = <I as SpecRangeSetup<I>>::setup(iter, step);
StepBy { iter, step: step - 1, first_take: true }
}
}
#[stable(feature = "iterator_step_by", since = "1.28.0")]
impl<I> Iterator for StepBy<I>
where
I: Iterator,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.spec_next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.spec_size_hint()
}
#[inline]
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.spec_nth(n)
}
fn try_fold<Acc, F, R>(&mut self, acc: Acc, f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
self.spec_try_fold(acc, f)
}
#[inline]
fn fold<Acc, F>(self, acc: Acc, f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
self.spec_fold(acc, f)
}
}
impl<I> StepBy<I>
where
I: ExactSizeIterator,
{
// The zero-based index starting from the end of the iterator of the
// last element. Used in the `DoubleEndedIterator` implementation.
fn next_back_index(&self) -> usize {
let rem = self.iter.len() % (self.step + 1);
if self.first_take { if rem == 0 { self.step } else { rem - 1 } } else { rem }
}
}
#[stable(feature = "double_ended_step_by_iterator", since = "1.38.0")]
impl<I> DoubleEndedIterator for StepBy<I>
where
I: DoubleEndedIterator + ExactSizeIterator,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.spec_next_back()
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
self.spec_nth_back(n)
}
fn try_rfold<Acc, F, R>(&mut self, init: Acc, f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
self.spec_try_rfold(init, f)
}
#[inline]
fn rfold<Acc, F>(self, init: Acc, f: F) -> Acc
where
Self: Sized,
F: FnMut(Acc, Self::Item) -> Acc,
{
self.spec_rfold(init, f)
}
}
// StepBy can only make the iterator shorter, so the len will still fit.
#[stable(feature = "iterator_step_by", since = "1.28.0")]
impl<I> ExactSizeIterator for StepBy<I> where I: ExactSizeIterator {}
// SAFETY: This adapter is shortening. TrustedLen requires the upper bound to be calculated correctly.
// These requirements can only be satisfied when the upper bound of the inner iterator's upper
// bound is never `None`. I: TrustedRandomAccess happens to provide this guarantee while
// I: TrustedLen would not.
// This also covers the Range specializations since the ranges also implement TRA
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<I> TrustedLen for StepBy<I> where I: Iterator + TrustedRandomAccess {}
trait SpecRangeSetup<T> {
fn setup(inner: T, step: usize) -> T;
}
impl<T> SpecRangeSetup<T> for T {
#[inline]
default fn setup(inner: T, _step: usize) -> T {
inner
}
}
/// Specialization trait to optimize `StepBy<Range<{integer}>>` iteration.
///
/// # Safety
///
/// Technically this is safe to implement (look ma, no unsafe!), but in reality
/// a lot of unsafe code relies on ranges over integers being correct.
///
/// For correctness *all* public StepBy methods must be specialized
/// because `setup` drastically alters the meaning of the struct fields so that mixing
/// different implementations would lead to incorrect results.
unsafe trait StepByImpl<I> {
type Item;
fn spec_next(&mut self) -> Option<Self::Item>;
fn spec_size_hint(&self) -> (usize, Option<usize>);
fn spec_nth(&mut self, n: usize) -> Option<Self::Item>;
fn spec_try_fold<Acc, F, R>(&mut self, acc: Acc, f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>;
fn spec_fold<Acc, F>(self, acc: Acc, f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc;
}
/// Specialization trait for double-ended iteration.
///
/// See also: `StepByImpl`
///
/// # Safety
///
/// The specializations must be implemented together with `StepByImpl`
/// where applicable. I.e. if `StepBy` does support backwards iteration
/// for a given iterator and that is specialized for forward iteration then
/// it must also be specialized for backwards iteration.
unsafe trait StepByBackImpl<I> {
type Item;
fn spec_next_back(&mut self) -> Option<Self::Item>
where
I: DoubleEndedIterator + ExactSizeIterator;
fn spec_nth_back(&mut self, n: usize) -> Option<Self::Item>
where
I: DoubleEndedIterator + ExactSizeIterator;
fn spec_try_rfold<Acc, F, R>(&mut self, init: Acc, f: F) -> R
where
I: DoubleEndedIterator + ExactSizeIterator,
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>;
fn spec_rfold<Acc, F>(self, init: Acc, f: F) -> Acc
where
I: DoubleEndedIterator + ExactSizeIterator,
F: FnMut(Acc, Self::Item) -> Acc;
}
unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
type Item = I::Item;
#[inline]
default fn spec_next(&mut self) -> Option<I::Item> {
let step_size = if self.first_take { 0 } else { self.step };
self.first_take = false;
self.iter.nth(step_size)
}
#[inline]
default fn spec_size_hint(&self) -> (usize, Option<usize>) {
#[inline]
fn first_size(step: usize) -> impl Fn(usize) -> usize {
move |n| if n == 0 { 0 } else { 1 + (n - 1) / (step + 1) }
}
#[inline]
fn other_size(step: usize) -> impl Fn(usize) -> usize {
move |n| n / (step + 1)
}
let (low, high) = self.iter.size_hint();
if self.first_take {
let f = first_size(self.step);
(f(low), high.map(f))
} else {
let f = other_size(self.step);
(f(low), high.map(f))
}
}
#[inline]
default fn spec_nth(&mut self, mut n: usize) -> Option<I::Item> {
if self.first_take {
self.first_take = false;
let first = self.iter.next();
if n == 0 {
return first;
}
n -= 1;
}
// n and self.step are indices, we need to add 1 to get the amount of elements
// When calling `.nth`, we need to subtract 1 again to convert back to an index
// step + 1 can't overflow because `.step_by` sets `self.step` to `step - 1`
let mut step = self.step + 1;
// n + 1 could overflow
// thus, if n is usize::MAX, instead of adding one, we call .nth(step)
if n == usize::MAX {
self.iter.nth(step - 1);
} else {
n += 1;
}
// overflow handling
loop {
let mul = n.checked_mul(step);
{
if intrinsics::likely(mul.is_some()) {
return self.iter.nth(mul.unwrap() - 1);
}
}
let div_n = usize::MAX / n;
let div_step = usize::MAX / step;
let nth_n = div_n * n;
let nth_step = div_step * step;
let nth = if nth_n > nth_step {
step -= div_n;
nth_n
} else {
n -= div_step;
nth_step
};
self.iter.nth(nth - 1);
}
}
default fn spec_try_fold<Acc, F, R>(&mut self, mut acc: Acc, mut f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
#[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step)
}
if self.first_take {
self.first_take = false;
match self.iter.next() {
None => return try { acc },
Some(x) => acc = f(acc, x)?,
}
}
from_fn(nth(&mut self.iter, self.step)).try_fold(acc, f)
}
default fn spec_fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
#[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step)
}
if self.first_take {
self.first_take = false;
match self.iter.next() {
None => return acc,
Some(x) => acc = f(acc, x),
}
}
from_fn(nth(&mut self.iter, self.step)).fold(acc, f)
}
}
unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for StepBy<I> {
type Item = I::Item;
#[inline]
default fn spec_next_back(&mut self) -> Option<Self::Item> {
self.iter.nth_back(self.next_back_index())
}
#[inline]
default fn spec_nth_back(&mut self, n: usize) -> Option<I::Item> {
// `self.iter.nth_back(usize::MAX)` does the right thing here when `n`
// is out of bounds because the length of `self.iter` does not exceed
// `usize::MAX` (because `I: ExactSizeIterator`) and `nth_back` is
// zero-indexed
let n = n.saturating_mul(self.step + 1).saturating_add(self.next_back_index());
self.iter.nth_back(n)
}
default fn spec_try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>,
{
#[inline]
fn nth_back<I: DoubleEndedIterator>(
iter: &mut I,
step: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step)
}
match self.next_back() {
None => try { init },
Some(x) => {
let acc = f(init, x)?;
from_fn(nth_back(&mut self.iter, self.step)).try_fold(acc, f)
}
}
}
#[inline]
default fn spec_rfold<Acc, F>(mut self, init: Acc, mut f: F) -> Acc
where
Self: Sized,
F: FnMut(Acc, I::Item) -> Acc,
{
#[inline]
fn nth_back<I: DoubleEndedIterator>(
iter: &mut I,
step: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step)
}
match self.next_back() {
None => init,
Some(x) => {
let acc = f(init, x);
from_fn(nth_back(&mut self.iter, self.step)).fold(acc, f)
}
}
}
}
/// For these implementations, `SpecRangeSetup` calculates the number
/// of iterations that will be needed and stores that in `iter.end`.
///
/// The various iterator implementations then rely on that to not need
/// overflow checking, letting loops just be counted instead.
///
/// These only work for unsigned types, and will need to be reworked
/// if you want to use it to specialize on signed types.
///
/// Currently these are only implemented for integers up to usize due to
/// correctness issues around ExactSizeIterator impls on 16bit platforms.
/// And since ExactSizeIterator is a prerequisite for backwards iteration
/// and we must consistently specialize backwards and forwards iteration
/// that makes the situation complicated enough that it's not covered
/// for now.
macro_rules! spec_int_ranges {
($($t:ty)*) => ($(
const _: () = assert!(usize::BITS >= <$t>::BITS);
impl SpecRangeSetup<Range<$t>> for Range<$t> {
#[inline]
fn setup(mut r: Range<$t>, step: usize) -> Range<$t> {
let inner_len = r.size_hint().0;
// If step exceeds $t::MAX, then the count will be at most 1 and
// thus always fit into $t.
let yield_count = inner_len.div_ceil(step);
// Turn the range end into an iteration counter
r.end = yield_count as $t;
r
}
}
unsafe impl StepByImpl<Range<$t>> for StepBy<Range<$t>> {
#[inline]
fn spec_next(&mut self) -> Option<$t> {
// if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1.
// The `+ 1` can't overflow since the constructor substracted 1 from the original value.
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX);
let remaining = self.iter.end;
if remaining > 0 {
let val = self.iter.start;
// this can only overflow during the last step, after which the value
// will not be used
self.iter.start = val.wrapping_add(step);
self.iter.end = remaining - 1;
Some(val)
} else {
None
}
}
#[inline]
fn spec_size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.iter.end as usize;
(remaining, Some(remaining))
}
// The methods below are all copied from the Iterator trait default impls.
// We have to repeat them here so that the specialization overrides the StepByImpl defaults
#[inline]
fn spec_nth(&mut self, n: usize) -> Option<Self::Item> {
self.advance_by(n).ok()?;
self.next()
}
#[inline]
fn spec_try_fold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
where
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>
{
let mut accum = init;
while let Some(x) = self.next() {
accum = f(accum, x)?;
}
try { accum }
}
#[inline]
fn spec_fold<Acc, F>(self, init: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc
{
// if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1.
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX);
let remaining = self.iter.end;
let mut acc = init;
let mut val = self.iter.start;
for _ in 0..remaining {
acc = f(acc, val);
// this can only overflow during the last step, after which the value
// will no longer be used
val = val.wrapping_add(step);
}
acc
}
}
)*)
}
macro_rules! spec_int_ranges_r {
($($t:ty)*) => ($(
const _: () = assert!(usize::BITS >= <$t>::BITS);
unsafe impl StepByBackImpl<Range<$t>> for StepBy<Range<$t>> {
#[inline]
fn spec_next_back(&mut self) -> Option<Self::Item>
where Range<$t>: DoubleEndedIterator + ExactSizeIterator,
{
let step = (self.step + 1) as $t;
let remaining = self.iter.end;
if remaining > 0 {
let start = self.iter.start;
self.iter.end = remaining - 1;
Some(start + step * (remaining - 1))
} else {
None
}
}
// The methods below are all copied from the Iterator trait default impls.
// We have to repeat them here so that the specialization overrides the StepByImplBack defaults
#[inline]
fn spec_nth_back(&mut self, n: usize) -> Option<Self::Item>
where Self: DoubleEndedIterator,
{
if self.advance_back_by(n).is_err() {
return None;
}
self.next_back()
}
#[inline]
fn spec_try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
where
Self: DoubleEndedIterator,
F: FnMut(Acc, Self::Item) -> R,
R: Try<Output = Acc>
{
let mut accum = init;
while let Some(x) = self.next_back() {
accum = f(accum, x)?;
}
try { accum }
}
#[inline]
fn spec_rfold<Acc, F>(mut self, init: Acc, mut f: F) -> Acc
where
Self: DoubleEndedIterator,
F: FnMut(Acc, Self::Item) -> Acc
{
let mut accum = init;
while let Some(x) = self.next_back() {
accum = f(accum, x);
}
accum
}
}
)*)
}
#[cfg(target_pointer_width = "64")]
spec_int_ranges!(u8 u16 u32 u64 usize);
// DoubleEndedIterator requires ExactSizeIterator, which isn't implemented for Range<u64>
#[cfg(target_pointer_width = "64")]
spec_int_ranges_r!(u8 u16 u32 usize);
#[cfg(target_pointer_width = "32")]
spec_int_ranges!(u8 u16 u32 usize);
#[cfg(target_pointer_width = "32")]
spec_int_ranges_r!(u8 u16 u32 usize);
#[cfg(target_pointer_width = "16")]
spec_int_ranges!(u8 u16 usize);
#[cfg(target_pointer_width = "16")]
spec_int_ranges_r!(u8 u16 usize);