1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//! A private parser implementation of IPv4, IPv6, and socket addresses.
//!
//! This module is "publicly exported" through the `FromStr` implementations
//! below.

use crate::error::Error;
use crate::fmt;
use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use crate::str::FromStr;

trait ReadNumberHelper: Sized {
    const ZERO: Self;
    fn checked_mul(&self, other: u32) -> Option<Self>;
    fn checked_add(&self, other: u32) -> Option<Self>;
}

macro_rules! impl_helper {
    ($($t:ty)*) => ($(impl ReadNumberHelper for $t {
        const ZERO: Self = 0;
        #[inline]
        fn checked_mul(&self, other: u32) -> Option<Self> {
            Self::checked_mul(*self, other.try_into().ok()?)
        }
        #[inline]
        fn checked_add(&self, other: u32) -> Option<Self> {
            Self::checked_add(*self, other.try_into().ok()?)
        }
    })*)
}

impl_helper! { u8 u16 u32 }

struct Parser<'a> {
    // Parsing as ASCII, so can use byte array.
    state: &'a [u8],
}

impl<'a> Parser<'a> {
    fn new(input: &'a [u8]) -> Parser<'a> {
        Parser { state: input }
    }

    /// Run a parser, and restore the pre-parse state if it fails.
    fn read_atomically<T, F>(&mut self, inner: F) -> Option<T>
    where
        F: FnOnce(&mut Parser<'_>) -> Option<T>,
    {
        let state = self.state;
        let result = inner(self);
        if result.is_none() {
            self.state = state;
        }
        result
    }

    /// Run a parser, but fail if the entire input wasn't consumed.
    /// Doesn't run atomically.
    fn parse_with<T, F>(&mut self, inner: F, kind: AddrKind) -> Result<T, AddrParseError>
    where
        F: FnOnce(&mut Parser<'_>) -> Option<T>,
    {
        let result = inner(self);
        if self.state.is_empty() { result } else { None }.ok_or(AddrParseError(kind))
    }

    /// Peek the next character from the input
    fn peek_char(&self) -> Option<char> {
        self.state.first().map(|&b| char::from(b))
    }

    /// Read the next character from the input
    fn read_char(&mut self) -> Option<char> {
        self.state.split_first().map(|(&b, tail)| {
            self.state = tail;
            char::from(b)
        })
    }

    #[must_use]
    /// Read the next character from the input if it matches the target.
    fn read_given_char(&mut self, target: char) -> Option<()> {
        self.read_atomically(|p| {
            p.read_char().and_then(|c| if c == target { Some(()) } else { None })
        })
    }

    /// Helper for reading separators in an indexed loop. Reads the separator
    /// character iff index > 0, then runs the parser. When used in a loop,
    /// the separator character will only be read on index > 0 (see
    /// read_ipv4_addr for an example)
    fn read_separator<T, F>(&mut self, sep: char, index: usize, inner: F) -> Option<T>
    where
        F: FnOnce(&mut Parser<'_>) -> Option<T>,
    {
        self.read_atomically(move |p| {
            if index > 0 {
                p.read_given_char(sep)?;
            }
            inner(p)
        })
    }

    // Read a number off the front of the input in the given radix, stopping
    // at the first non-digit character or eof. Fails if the number has more
    // digits than max_digits or if there is no number.
    //
    // INVARIANT: `max_digits` must be less than the number of digits that `u32`
    // can represent.
    fn read_number<T: ReadNumberHelper + TryFrom<u32>>(
        &mut self,
        radix: u32,
        max_digits: Option<usize>,
        allow_zero_prefix: bool,
    ) -> Option<T> {
        // If max_digits.is_some(), then we are parsing a `u8` or `u16` and
        // don't need to use checked arithmetic since it fits within a `u32`.
        if let Some(max_digits) = max_digits {
            // u32::MAX = 4_294_967_295u32, which is 10 digits long.
            // `max_digits` must be less than 10 to not overflow a `u32`.
            debug_assert!(max_digits < 10);

            self.read_atomically(move |p| {
                let mut result = 0_u32;
                let mut digit_count = 0;
                let has_leading_zero = p.peek_char() == Some('0');

                while let Some(digit) = p.read_atomically(|p| p.read_char()?.to_digit(radix)) {
                    result *= radix;
                    result += digit;
                    digit_count += 1;

                    if digit_count > max_digits {
                        return None;
                    }
                }

                if digit_count == 0 {
                    None
                } else if !allow_zero_prefix && has_leading_zero && digit_count > 1 {
                    None
                } else {
                    result.try_into().ok()
                }
            })
        } else {
            self.read_atomically(move |p| {
                let mut result = T::ZERO;
                let mut digit_count = 0;
                let has_leading_zero = p.peek_char() == Some('0');

                while let Some(digit) = p.read_atomically(|p| p.read_char()?.to_digit(radix)) {
                    result = result.checked_mul(radix)?;
                    result = result.checked_add(digit)?;
                    digit_count += 1;
                }

                if digit_count == 0 {
                    None
                } else if !allow_zero_prefix && has_leading_zero && digit_count > 1 {
                    None
                } else {
                    Some(result)
                }
            })
        }
    }

    /// Read an IPv4 address.
    fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> {
        self.read_atomically(|p| {
            let mut groups = [0; 4];

            for (i, slot) in groups.iter_mut().enumerate() {
                *slot = p.read_separator('.', i, |p| {
                    // Disallow octal number in IP string.
                    // https://tools.ietf.org/html/rfc6943#section-3.1.1
                    p.read_number(10, Some(3), false)
                })?;
            }

            Some(groups.into())
        })
    }

    /// Read an IPv6 Address.
    fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> {
        /// Read a chunk of an IPv6 address into `groups`. Returns the number
        /// of groups read, along with a bool indicating if an embedded
        /// trailing IPv4 address was read. Specifically, read a series of
        /// colon-separated IPv6 groups (0x0000 - 0xFFFF), with an optional
        /// trailing embedded IPv4 address.
        fn read_groups(p: &mut Parser<'_>, groups: &mut [u16]) -> (usize, bool) {
            let limit = groups.len();

            for (i, slot) in groups.iter_mut().enumerate() {
                // Try to read a trailing embedded IPv4 address. There must be
                // at least two groups left.
                if i < limit - 1 {
                    let ipv4 = p.read_separator(':', i, |p| p.read_ipv4_addr());

                    if let Some(v4_addr) = ipv4 {
                        let [one, two, three, four] = v4_addr.octets();
                        groups[i + 0] = u16::from_be_bytes([one, two]);
                        groups[i + 1] = u16::from_be_bytes([three, four]);
                        return (i + 2, true);
                    }
                }

                let group = p.read_separator(':', i, |p| p.read_number(16, Some(4), true));

                match group {
                    Some(g) => *slot = g,
                    None => return (i, false),
                }
            }
            (groups.len(), false)
        }

        self.read_atomically(|p| {
            // Read the front part of the address; either the whole thing, or up
            // to the first ::
            let mut head = [0; 8];
            let (head_size, head_ipv4) = read_groups(p, &mut head);

            if head_size == 8 {
                return Some(head.into());
            }

            // IPv4 part is not allowed before `::`
            if head_ipv4 {
                return None;
            }

            // Read `::` if previous code parsed less than 8 groups.
            // `::` indicates one or more groups of 16 bits of zeros.
            p.read_given_char(':')?;
            p.read_given_char(':')?;

            // Read the back part of the address. The :: must contain at least one
            // set of zeroes, so our max length is 7.
            let mut tail = [0; 7];
            let limit = 8 - (head_size + 1);
            let (tail_size, _) = read_groups(p, &mut tail[..limit]);

            // Concat the head and tail of the IP address
            head[(8 - tail_size)..8].copy_from_slice(&tail[..tail_size]);

            Some(head.into())
        })
    }

    /// Read an IP Address, either IPv4 or IPv6.
    fn read_ip_addr(&mut self) -> Option<IpAddr> {
        self.read_ipv4_addr().map(IpAddr::V4).or_else(move || self.read_ipv6_addr().map(IpAddr::V6))
    }

    /// Read a `:` followed by a port in base 10.
    fn read_port(&mut self) -> Option<u16> {
        self.read_atomically(|p| {
            p.read_given_char(':')?;
            p.read_number(10, None, true)
        })
    }

    /// Read a `%` followed by a scope ID in base 10.
    fn read_scope_id(&mut self) -> Option<u32> {
        self.read_atomically(|p| {
            p.read_given_char('%')?;
            p.read_number(10, None, true)
        })
    }

    /// Read an IPv4 address with a port.
    fn read_socket_addr_v4(&mut self) -> Option<SocketAddrV4> {
        self.read_atomically(|p| {
            let ip = p.read_ipv4_addr()?;
            let port = p.read_port()?;
            Some(SocketAddrV4::new(ip, port))
        })
    }

    /// Read an IPv6 address with a port.
    fn read_socket_addr_v6(&mut self) -> Option<SocketAddrV6> {
        self.read_atomically(|p| {
            p.read_given_char('[')?;
            let ip = p.read_ipv6_addr()?;
            let scope_id = p.read_scope_id().unwrap_or(0);
            p.read_given_char(']')?;

            let port = p.read_port()?;
            Some(SocketAddrV6::new(ip, port, 0, scope_id))
        })
    }

    /// Read an IP address with a port
    fn read_socket_addr(&mut self) -> Option<SocketAddr> {
        self.read_socket_addr_v4()
            .map(SocketAddr::V4)
            .or_else(|| self.read_socket_addr_v6().map(SocketAddr::V6))
    }
}

impl IpAddr {
    /// Parse an IP address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
    /// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
    ///
    /// assert_eq!(IpAddr::parse_ascii(b"127.0.0.1"), Ok(localhost_v4));
    /// assert_eq!(IpAddr::parse_ascii(b"::1"), Ok(localhost_v6));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        Parser::new(b).parse_with(|p| p.read_ip_addr(), AddrKind::Ip)
    }
}

#[stable(feature = "ip_addr", since = "1.7.0")]
impl FromStr for IpAddr {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<IpAddr, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

impl Ipv4Addr {
    /// Parse an IPv4 address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::Ipv4Addr;
    ///
    /// let localhost = Ipv4Addr::new(127, 0, 0, 1);
    ///
    /// assert_eq!(Ipv4Addr::parse_ascii(b"127.0.0.1"), Ok(localhost));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        // don't try to parse if too long
        if b.len() > 15 {
            Err(AddrParseError(AddrKind::Ipv4))
        } else {
            Parser::new(b).parse_with(|p| p.read_ipv4_addr(), AddrKind::Ipv4)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv4Addr {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

impl Ipv6Addr {
    /// Parse an IPv6 address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::Ipv6Addr;
    ///
    /// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
    ///
    /// assert_eq!(Ipv6Addr::parse_ascii(b"::1"), Ok(localhost));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        Parser::new(b).parse_with(|p| p.read_ipv6_addr(), AddrKind::Ipv6)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv6Addr {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

impl SocketAddrV4 {
    /// Parse an IPv4 socket address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::{Ipv4Addr, SocketAddrV4};
    ///
    /// let socket = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080);
    ///
    /// assert_eq!(SocketAddrV4::parse_ascii(b"127.0.0.1:8080"), Ok(socket));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        Parser::new(b).parse_with(|p| p.read_socket_addr_v4(), AddrKind::SocketV4)
    }
}

#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV4 {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<SocketAddrV4, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

impl SocketAddrV6 {
    /// Parse an IPv6 socket address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::{Ipv6Addr, SocketAddrV6};
    ///
    /// let socket = SocketAddrV6::new(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1), 8080, 0, 0);
    ///
    /// assert_eq!(SocketAddrV6::parse_ascii(b"[2001:db8::1]:8080"), Ok(socket));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        Parser::new(b).parse_with(|p| p.read_socket_addr_v6(), AddrKind::SocketV6)
    }
}

#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV6 {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<SocketAddrV6, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

impl SocketAddr {
    /// Parse a socket address from a slice of bytes.
    ///
    /// ```
    /// #![feature(addr_parse_ascii)]
    ///
    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
    ///
    /// let socket_v4 = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 8080);
    /// let socket_v6 = SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 8080);
    ///
    /// assert_eq!(SocketAddr::parse_ascii(b"127.0.0.1:8080"), Ok(socket_v4));
    /// assert_eq!(SocketAddr::parse_ascii(b"[::1]:8080"), Ok(socket_v6));
    /// ```
    #[unstable(feature = "addr_parse_ascii", issue = "101035")]
    pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
        Parser::new(b).parse_with(|p| p.read_socket_addr(), AddrKind::Socket)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for SocketAddr {
    type Err = AddrParseError;
    fn from_str(s: &str) -> Result<SocketAddr, AddrParseError> {
        Self::parse_ascii(s.as_bytes())
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum AddrKind {
    Ip,
    Ipv4,
    Ipv6,
    Socket,
    SocketV4,
    SocketV6,
}

/// An error which can be returned when parsing an IP address or a socket address.
///
/// This error is used as the error type for the [`FromStr`] implementation for
/// [`IpAddr`], [`Ipv4Addr`], [`Ipv6Addr`], [`SocketAddr`], [`SocketAddrV4`], and
/// [`SocketAddrV6`].
///
/// # Potential causes
///
/// `AddrParseError` may be thrown because the provided string does not parse as the given type,
/// often because it includes information only handled by a different address type.
///
/// ```should_panic
/// use std::net::IpAddr;
/// let _foo: IpAddr = "127.0.0.1:8080".parse().expect("Cannot handle the socket port");
/// ```
///
/// [`IpAddr`] doesn't handle the port. Use [`SocketAddr`] instead.
///
/// ```
/// use std::net::SocketAddr;
///
/// // No problem, the `panic!` message has disappeared.
/// let _foo: SocketAddr = "127.0.0.1:8080".parse().expect("unreachable panic");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AddrParseError(AddrKind);

#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl fmt::Display for AddrParseError {
    #[allow(deprecated, deprecated_in_future)]
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.write_str(self.description())
    }
}

#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl Error for AddrParseError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match self.0 {
            AddrKind::Ip => "invalid IP address syntax",
            AddrKind::Ipv4 => "invalid IPv4 address syntax",
            AddrKind::Ipv6 => "invalid IPv6 address syntax",
            AddrKind::Socket => "invalid socket address syntax",
            AddrKind::SocketV4 => "invalid IPv4 socket address syntax",
            AddrKind::SocketV6 => "invalid IPv6 socket address syntax",
        }
    }
}