1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//! Memory allocation APIs.
//!
//! In a given program, the standard library has one “global” memory allocator
//! that is used for example by `Box<T>` and `Vec<T>`.
//!
//! Currently the default global allocator is unspecified. Libraries, however,
//! like `cdylib`s and `staticlib`s are guaranteed to use the [`System`] by
//! default.
//!
//! # The `#[global_allocator]` attribute
//!
//! This attribute allows configuring the choice of global allocator.
//! You can use this to implement a completely custom global allocator
//! to route all default allocation requests to a custom object.
//!
//! ```rust
//! use std::alloc::{GlobalAlloc, System, Layout};
//!
//! struct MyAllocator;
//!
//! unsafe impl GlobalAlloc for MyAllocator {
//! unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
//! System.alloc(layout)
//! }
//!
//! unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
//! System.dealloc(ptr, layout)
//! }
//! }
//!
//! #[global_allocator]
//! static GLOBAL: MyAllocator = MyAllocator;
//!
//! fn main() {
//! // This `Vec` will allocate memory through `GLOBAL` above
//! let mut v = Vec::new();
//! v.push(1);
//! }
//! ```
//!
//! The attribute is used on a `static` item whose type implements the
//! [`GlobalAlloc`] trait. This type can be provided by an external library:
//!
//! ```rust,ignore (demonstrates crates.io usage)
//! use jemallocator::Jemalloc;
//!
//! #[global_allocator]
//! static GLOBAL: Jemalloc = Jemalloc;
//!
//! fn main() {}
//! ```
//!
//! The `#[global_allocator]` can only be used once in a crate
//! or its recursive dependencies.
#![deny(unsafe_op_in_unsafe_fn)]
#![stable(feature = "alloc_module", since = "1.28.0")]
use core::hint;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering};
use core::{mem, ptr};
#[stable(feature = "alloc_module", since = "1.28.0")]
#[doc(inline)]
pub use alloc_crate::alloc::*;
/// The default memory allocator provided by the operating system.
///
/// This is based on `malloc` on Unix platforms and `HeapAlloc` on Windows,
/// plus related functions. However, it is not valid to mix use of the backing
/// system allocator with `System`, as this implementation may include extra
/// work, such as to serve alignment requests greater than the alignment
/// provided directly by the backing system allocator.
///
/// This type implements the `GlobalAlloc` trait and Rust programs by default
/// work as if they had this definition:
///
/// ```rust
/// use std::alloc::System;
///
/// #[global_allocator]
/// static A: System = System;
///
/// fn main() {
/// let a = Box::new(4); // Allocates from the system allocator.
/// println!("{a}");
/// }
/// ```
///
/// You can also define your own wrapper around `System` if you'd like, such as
/// keeping track of the number of all bytes allocated:
///
/// ```rust
/// use std::alloc::{System, GlobalAlloc, Layout};
/// use std::sync::atomic::{AtomicUsize, Ordering::Relaxed};
///
/// struct Counter;
///
/// static ALLOCATED: AtomicUsize = AtomicUsize::new(0);
///
/// unsafe impl GlobalAlloc for Counter {
/// unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
/// let ret = System.alloc(layout);
/// if !ret.is_null() {
/// ALLOCATED.fetch_add(layout.size(), Relaxed);
/// }
/// ret
/// }
///
/// unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
/// System.dealloc(ptr, layout);
/// ALLOCATED.fetch_sub(layout.size(), Relaxed);
/// }
/// }
///
/// #[global_allocator]
/// static A: Counter = Counter;
///
/// fn main() {
/// println!("allocated bytes before main: {}", ALLOCATED.load(Relaxed));
/// }
/// ```
///
/// It can also be used directly to allocate memory independently of whatever
/// global allocator has been selected for a Rust program. For example if a Rust
/// program opts in to using jemalloc as the global allocator, `System` will
/// still allocate memory using `malloc` and `HeapAlloc`.
#[stable(feature = "alloc_system_type", since = "1.28.0")]
#[derive(Debug, Default, Copy, Clone)]
pub struct System;
impl System {
#[inline]
fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
match layout.size() {
0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)),
// SAFETY: `layout` is non-zero in size,
size => unsafe {
let raw_ptr = if zeroed {
GlobalAlloc::alloc_zeroed(self, layout)
} else {
GlobalAlloc::alloc(self, layout)
};
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
Ok(NonNull::slice_from_raw_parts(ptr, size))
},
}
}
// SAFETY: Same as `Allocator::grow`
#[inline]
unsafe fn grow_impl(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
zeroed: bool,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
match old_layout.size() {
0 => self.alloc_impl(new_layout, zeroed),
// SAFETY: `new_size` is non-zero as `new_size` is greater than or equal to `old_size`
// as required by safety conditions and the `old_size == 0` case was handled in the
// previous match arm. Other conditions must be upheld by the caller
old_size if old_layout.align() == new_layout.align() => unsafe {
let new_size = new_layout.size();
// `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
hint::assert_unchecked(new_size >= old_layout.size());
let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size);
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
if zeroed {
raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
}
Ok(NonNull::slice_from_raw_parts(ptr, new_size))
},
// SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
// both the old and new memory allocation are valid for reads and writes for `old_size`
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
// for `dealloc` must be upheld by the caller.
old_size => unsafe {
let new_ptr = self.alloc_impl(new_layout, zeroed)?;
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size);
Allocator::deallocate(self, ptr, old_layout);
Ok(new_ptr)
},
}
}
}
// The Allocator impl checks the layout size to be non-zero and forwards to the GlobalAlloc impl,
// which is in `std::sys::*::alloc`.
#[unstable(feature = "allocator_api", issue = "32838")]
unsafe impl Allocator for System {
#[inline]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.alloc_impl(layout, false)
}
#[inline]
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.alloc_impl(layout, true)
}
#[inline]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if layout.size() != 0 {
// SAFETY: `layout` is non-zero in size,
// other conditions must be upheld by the caller
unsafe { GlobalAlloc::dealloc(self, ptr.as_ptr(), layout) }
}
}
#[inline]
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: all conditions must be upheld by the caller
unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
}
#[inline]
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: all conditions must be upheld by the caller
unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
}
#[inline]
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
);
match new_layout.size() {
// SAFETY: conditions must be upheld by the caller
0 => unsafe {
Allocator::deallocate(self, ptr, old_layout);
Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0))
},
// SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
new_size if old_layout.align() == new_layout.align() => unsafe {
// `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
hint::assert_unchecked(new_size <= old_layout.size());
let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size);
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
Ok(NonNull::slice_from_raw_parts(ptr, new_size))
},
// SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
// both the old and new memory allocation are valid for reads and writes for `new_size`
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
// for `dealloc` must be upheld by the caller.
new_size => unsafe {
let new_ptr = Allocator::allocate(self, new_layout)?;
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size);
Allocator::deallocate(self, ptr, old_layout);
Ok(new_ptr)
},
}
}
}
static HOOK: AtomicPtr<()> = AtomicPtr::new(ptr::null_mut());
/// Registers a custom allocation error hook, replacing any that was previously registered.
///
/// The allocation error hook is invoked when an infallible memory allocation fails — that is,
/// as a consequence of calling [`handle_alloc_error`] — before the runtime aborts.
///
/// The allocation error hook is a global resource. [`take_alloc_error_hook`] may be used to
/// retrieve a previously registered hook and wrap or discard it.
///
/// # What the provided `hook` function should expect
///
/// The hook function is provided with a [`Layout`] struct which contains information
/// about the allocation that failed.
///
/// The hook function may choose to panic or abort; in the event that it returns normally, this
/// will cause an immediate abort.
///
/// Since [`take_alloc_error_hook`] is a safe function that allows retrieving the hook, the hook
/// function must be _sound_ to call even if no memory allocations were attempted.
///
/// # The default hook
///
/// The default hook, used if [`set_alloc_error_hook`] is never called, prints a message to
/// standard error (and then returns, causing the runtime to abort the process).
/// Compiler options may cause it to panic instead, and the default behavior may be changed
/// to panicking in future versions of Rust.
///
/// # Examples
///
/// ```
/// #![feature(alloc_error_hook)]
///
/// use std::alloc::{Layout, set_alloc_error_hook};
///
/// fn custom_alloc_error_hook(layout: Layout) {
/// panic!("memory allocation of {} bytes failed", layout.size());
/// }
///
/// set_alloc_error_hook(custom_alloc_error_hook);
/// ```
#[unstable(feature = "alloc_error_hook", issue = "51245")]
pub fn set_alloc_error_hook(hook: fn(Layout)) {
HOOK.store(hook as *mut (), Ordering::Release);
}
/// Unregisters the current allocation error hook, returning it.
///
/// *See also the function [`set_alloc_error_hook`].*
///
/// If no custom hook is registered, the default hook will be returned.
#[unstable(feature = "alloc_error_hook", issue = "51245")]
pub fn take_alloc_error_hook() -> fn(Layout) {
let hook = HOOK.swap(ptr::null_mut(), Ordering::Acquire);
if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } }
}
fn default_alloc_error_hook(layout: Layout) {
extern "Rust" {
// This symbol is emitted by rustc next to __rust_alloc_error_handler.
// Its value depends on the -Zoom={panic,abort} compiler option.
static __rust_alloc_error_handler_should_panic: u8;
}
if unsafe { __rust_alloc_error_handler_should_panic != 0 } {
panic!("memory allocation of {} bytes failed", layout.size());
} else {
rtprintpanic!("memory allocation of {} bytes failed\n", layout.size());
}
}
#[cfg(not(test))]
#[doc(hidden)]
#[alloc_error_handler]
#[unstable(feature = "alloc_internals", issue = "none")]
pub fn rust_oom(layout: Layout) -> ! {
let hook = HOOK.load(Ordering::Acquire);
let hook: fn(Layout) =
if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } };
hook(layout);
crate::process::abort()
}
#[cfg(not(test))]
#[doc(hidden)]
#[allow(unused_attributes)]
#[unstable(feature = "alloc_internals", issue = "none")]
pub mod __default_lib_allocator {
use super::{GlobalAlloc, Layout, System};
// These magic symbol names are used as a fallback for implementing the
// `__rust_alloc` etc symbols (see `src/liballoc/alloc.rs`) when there is
// no `#[global_allocator]` attribute.
// for symbol names src/librustc_ast/expand/allocator.rs
// for signatures src/librustc_allocator/lib.rs
// linkage directives are provided as part of the current compiler allocator
// ABI
#[rustc_std_internal_symbol]
pub unsafe extern "C" fn __rdl_alloc(size: usize, align: usize) -> *mut u8 {
// SAFETY: see the guarantees expected by `Layout::from_size_align` and
// `GlobalAlloc::alloc`.
unsafe {
let layout = Layout::from_size_align_unchecked(size, align);
System.alloc(layout)
}
}
#[rustc_std_internal_symbol]
pub unsafe extern "C" fn __rdl_dealloc(ptr: *mut u8, size: usize, align: usize) {
// SAFETY: see the guarantees expected by `Layout::from_size_align` and
// `GlobalAlloc::dealloc`.
unsafe { System.dealloc(ptr, Layout::from_size_align_unchecked(size, align)) }
}
#[rustc_std_internal_symbol]
pub unsafe extern "C" fn __rdl_realloc(
ptr: *mut u8,
old_size: usize,
align: usize,
new_size: usize,
) -> *mut u8 {
// SAFETY: see the guarantees expected by `Layout::from_size_align` and
// `GlobalAlloc::realloc`.
unsafe {
let old_layout = Layout::from_size_align_unchecked(old_size, align);
System.realloc(ptr, old_layout, new_size)
}
}
#[rustc_std_internal_symbol]
pub unsafe extern "C" fn __rdl_alloc_zeroed(size: usize, align: usize) -> *mut u8 {
// SAFETY: see the guarantees expected by `Layout::from_size_align` and
// `GlobalAlloc::alloc_zeroed`.
unsafe {
let layout = Layout::from_size_align_unchecked(size, align);
System.alloc_zeroed(layout)
}
}
}