1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#![cfg_attr(
    feature = "as_crate",
    feature(core_intrinsics),
    feature(portable_simd),
    allow(internal_features)
)]
#[cfg(not(feature = "as_crate"))]
use core::simd;
#[cfg(feature = "as_crate")]
use core_simd::simd;

use core::intrinsics::simd as intrinsics;

use simd::{LaneCount, Simd, SupportedLaneCount};

#[cfg(feature = "as_crate")]
mod experimental {
    pub trait Sealed {}
}

#[cfg(feature = "as_crate")]
use experimental as sealed;

use crate::sealed::Sealed;

/// This trait provides a possibly-temporary implementation of float functions
/// that may, in the absence of hardware support, canonicalize to calling an
/// operating system's `math.h` dynamically-loaded library (also known as a
/// shared object). As these conditionally require runtime support, they
/// should only appear in binaries built assuming OS support: `std`.
///
/// However, there is no reason SIMD types, in general, need OS support,
/// as for many architectures an embedded binary may simply configure that
/// support itself. This means these types must be visible in `core`
/// but have these functions available in `std`.
///
/// [`f32`] and [`f64`] achieve a similar trick by using "lang items", but
/// due to compiler limitations, it is harder to implement this approach for
/// abstract data types like [`Simd`]. From that need, this trait is born.
///
/// It is possible this trait will be replaced in some manner in the future,
/// when either the compiler or its supporting runtime functions are improved.
/// For now this trait is available to permit experimentation with SIMD float
/// operations that may lack hardware support, such as `mul_add`.
pub trait StdFloat: Sealed + Sized {
    /// Elementwise fused multiply-add. Computes `(self * a) + b` with only one rounding error,
    /// yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
    /// architecture has a dedicated `fma` CPU instruction.  However, this is not always
    /// true, and will be heavily dependent on designing algorithms with specific target
    /// hardware in mind.
    #[inline]
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn mul_add(self, a: Self, b: Self) -> Self {
        unsafe { intrinsics::simd_fma(self, a, b) }
    }

    /// Produces a vector where every element has the square root value
    /// of the equivalently-indexed element in `self`
    #[inline]
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn sqrt(self) -> Self {
        unsafe { intrinsics::simd_fsqrt(self) }
    }

    /// Produces a vector where every element has the sine of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn sin(self) -> Self;

    /// Produces a vector where every element has the cosine of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn cos(self) -> Self;

    /// Produces a vector where every element has the exponential (base e) of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn exp(self) -> Self;

    /// Produces a vector where every element has the exponential (base 2) of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn exp2(self) -> Self;

    /// Produces a vector where every element has the natural logarithm of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn ln(self) -> Self;

    /// Produces a vector where every element has the logarithm with respect to an arbitrary
    /// in the equivalently-indexed elements in `self` and `base`.
    #[inline]
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn log(self, base: Self) -> Self {
        unsafe { intrinsics::simd_div(self.ln(), base.ln()) }
    }

    /// Produces a vector where every element has the base-2 logarithm of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn log2(self) -> Self;

    /// Produces a vector where every element has the base-10 logarithm of the value
    /// in the equivalently-indexed element in `self`.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn log10(self) -> Self;

    /// Returns the smallest integer greater than or equal to each element.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    #[inline]
    fn ceil(self) -> Self {
        unsafe { intrinsics::simd_ceil(self) }
    }

    /// Returns the largest integer value less than or equal to each element.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    #[inline]
    fn floor(self) -> Self {
        unsafe { intrinsics::simd_floor(self) }
    }

    /// Rounds to the nearest integer value. Ties round toward zero.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    #[inline]
    fn round(self) -> Self {
        unsafe { intrinsics::simd_round(self) }
    }

    /// Returns the floating point's integer value, with its fractional part removed.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    #[inline]
    fn trunc(self) -> Self {
        unsafe { intrinsics::simd_trunc(self) }
    }

    /// Returns the floating point's fractional value, with its integer part removed.
    #[must_use = "method returns a new vector and does not mutate the original value"]
    fn fract(self) -> Self;
}

impl<const N: usize> Sealed for Simd<f32, N> where LaneCount<N>: SupportedLaneCount {}
impl<const N: usize> Sealed for Simd<f64, N> where LaneCount<N>: SupportedLaneCount {}

macro_rules! impl_float {
    {
        $($fn:ident: $intrinsic:ident,)*
    } => {
        impl<const N: usize> StdFloat for Simd<f32, N>
        where
            LaneCount<N>: SupportedLaneCount,
        {
            #[inline]
            fn fract(self) -> Self {
                self - self.trunc()
            }

            $(
            #[inline]
            fn $fn(self) -> Self {
                unsafe { intrinsics::$intrinsic(self) }
            }
            )*
        }

        impl<const N: usize> StdFloat for Simd<f64, N>
        where
            LaneCount<N>: SupportedLaneCount,
        {
            #[inline]
            fn fract(self) -> Self {
                self - self.trunc()
            }

            $(
            #[inline]
            fn $fn(self) -> Self {
                // https://github.com/llvm/llvm-project/issues/83729
                #[cfg(target_arch = "aarch64")]
                {
                    let mut ln = Self::splat(0f64);
                    for i in 0..N {
                        ln[i] = self[i].$fn()
                    }
                    ln
                }

                #[cfg(not(target_arch = "aarch64"))]
                {
                    unsafe { intrinsics::$intrinsic(self) }
                }
            }
            )*
        }
    }
}

impl_float! {
    sin: simd_fsin,
    cos: simd_fcos,
    exp: simd_fexp,
    exp2: simd_fexp2,
    ln: simd_flog,
    log2: simd_flog2,
    log10: simd_flog10,
}