alloc/
string.rs

1//! A UTF-8–encoded, growable string.
2//!
3//! This module contains the [`String`] type, the [`ToString`] trait for
4//! converting to strings, and several error types that may result from
5//! working with [`String`]s.
6//!
7//! # Examples
8//!
9//! There are multiple ways to create a new [`String`] from a string literal:
10//!
11//! ```
12//! let s = "Hello".to_string();
13//!
14//! let s = String::from("world");
15//! let s: String = "also this".into();
16//! ```
17//!
18//! You can create a new [`String`] from an existing one by concatenating with
19//! `+`:
20//!
21//! ```
22//! let s = "Hello".to_string();
23//!
24//! let message = s + " world!";
25//! ```
26//!
27//! If you have a vector of valid UTF-8 bytes, you can make a [`String`] out of
28//! it. You can do the reverse too.
29//!
30//! ```
31//! let sparkle_heart = vec![240, 159, 146, 150];
32//!
33//! // We know these bytes are valid, so we'll use `unwrap()`.
34//! let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
35//!
36//! assert_eq!("💖", sparkle_heart);
37//!
38//! let bytes = sparkle_heart.into_bytes();
39//!
40//! assert_eq!(bytes, [240, 159, 146, 150]);
41//! ```
42
43#![stable(feature = "rust1", since = "1.0.0")]
44
45use core::error::Error;
46use core::iter::FusedIterator;
47#[cfg(not(no_global_oom_handling))]
48use core::iter::from_fn;
49#[cfg(not(no_global_oom_handling))]
50use core::ops::Add;
51#[cfg(not(no_global_oom_handling))]
52use core::ops::AddAssign;
53#[cfg(not(no_global_oom_handling))]
54use core::ops::Bound::{Excluded, Included, Unbounded};
55use core::ops::{self, Range, RangeBounds};
56use core::str::pattern::{Pattern, Utf8Pattern};
57use core::{fmt, hash, ptr, slice};
58
59#[cfg(not(no_global_oom_handling))]
60use crate::alloc::Allocator;
61#[cfg(not(no_global_oom_handling))]
62use crate::borrow::{Cow, ToOwned};
63use crate::boxed::Box;
64use crate::collections::TryReserveError;
65use crate::str::{self, CharIndices, Chars, Utf8Error, from_utf8_unchecked_mut};
66#[cfg(not(no_global_oom_handling))]
67use crate::str::{FromStr, from_boxed_utf8_unchecked};
68use crate::vec::{self, Vec};
69
70/// A UTF-8–encoded, growable string.
71///
72/// `String` is the most common string type. It has ownership over the contents
73/// of the string, stored in a heap-allocated buffer (see [Representation](#representation)).
74/// It is closely related to its borrowed counterpart, the primitive [`str`].
75///
76/// # Examples
77///
78/// You can create a `String` from [a literal string][`&str`] with [`String::from`]:
79///
80/// [`String::from`]: From::from
81///
82/// ```
83/// let hello = String::from("Hello, world!");
84/// ```
85///
86/// You can append a [`char`] to a `String` with the [`push`] method, and
87/// append a [`&str`] with the [`push_str`] method:
88///
89/// ```
90/// let mut hello = String::from("Hello, ");
91///
92/// hello.push('w');
93/// hello.push_str("orld!");
94/// ```
95///
96/// [`push`]: String::push
97/// [`push_str`]: String::push_str
98///
99/// If you have a vector of UTF-8 bytes, you can create a `String` from it with
100/// the [`from_utf8`] method:
101///
102/// ```
103/// // some bytes, in a vector
104/// let sparkle_heart = vec![240, 159, 146, 150];
105///
106/// // We know these bytes are valid, so we'll use `unwrap()`.
107/// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
108///
109/// assert_eq!("💖", sparkle_heart);
110/// ```
111///
112/// [`from_utf8`]: String::from_utf8
113///
114/// # UTF-8
115///
116/// `String`s are always valid UTF-8. If you need a non-UTF-8 string, consider
117/// [`OsString`]. It is similar, but without the UTF-8 constraint. Because UTF-8
118/// is a variable width encoding, `String`s are typically smaller than an array of
119/// the same `char`s:
120///
121/// ```
122/// use std::mem;
123///
124/// // `s` is ASCII which represents each `char` as one byte
125/// let s = "hello";
126/// assert_eq!(s.len(), 5);
127///
128/// // A `char` array with the same contents would be longer because
129/// // every `char` is four bytes
130/// let s = ['h', 'e', 'l', 'l', 'o'];
131/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
132/// assert_eq!(size, 20);
133///
134/// // However, for non-ASCII strings, the difference will be smaller
135/// // and sometimes they are the same
136/// let s = "💖💖💖💖💖";
137/// assert_eq!(s.len(), 20);
138///
139/// let s = ['💖', '💖', '💖', '💖', '💖'];
140/// let size: usize = s.into_iter().map(|c| mem::size_of_val(&c)).sum();
141/// assert_eq!(size, 20);
142/// ```
143///
144/// This raises interesting questions as to how `s[i]` should work.
145/// What should `i` be here? Several options include byte indices and
146/// `char` indices but, because of UTF-8 encoding, only byte indices
147/// would provide constant time indexing. Getting the `i`th `char`, for
148/// example, is available using [`chars`]:
149///
150/// ```
151/// let s = "hello";
152/// let third_character = s.chars().nth(2);
153/// assert_eq!(third_character, Some('l'));
154///
155/// let s = "💖💖💖💖💖";
156/// let third_character = s.chars().nth(2);
157/// assert_eq!(third_character, Some('💖'));
158/// ```
159///
160/// Next, what should `s[i]` return? Because indexing returns a reference
161/// to underlying data it could be `&u8`, `&[u8]`, or something else similar.
162/// Since we're only providing one index, `&u8` makes the most sense but that
163/// might not be what the user expects and can be explicitly achieved with
164/// [`as_bytes()`]:
165///
166/// ```
167/// // The first byte is 104 - the byte value of `'h'`
168/// let s = "hello";
169/// assert_eq!(s.as_bytes()[0], 104);
170/// // or
171/// assert_eq!(s.as_bytes()[0], b'h');
172///
173/// // The first byte is 240 which isn't obviously useful
174/// let s = "💖💖💖💖💖";
175/// assert_eq!(s.as_bytes()[0], 240);
176/// ```
177///
178/// Due to these ambiguities/restrictions, indexing with a `usize` is simply
179/// forbidden:
180///
181/// ```compile_fail,E0277
182/// let s = "hello";
183///
184/// // The following will not compile!
185/// println!("The first letter of s is {}", s[0]);
186/// ```
187///
188/// It is more clear, however, how `&s[i..j]` should work (that is,
189/// indexing with a range). It should accept byte indices (to be constant-time)
190/// and return a `&str` which is UTF-8 encoded. This is also called "string slicing".
191/// Note this will panic if the byte indices provided are not character
192/// boundaries - see [`is_char_boundary`] for more details. See the implementations
193/// for [`SliceIndex<str>`] for more details on string slicing. For a non-panicking
194/// version of string slicing, see [`get`].
195///
196/// [`OsString`]: ../../std/ffi/struct.OsString.html "ffi::OsString"
197/// [`SliceIndex<str>`]: core::slice::SliceIndex
198/// [`as_bytes()`]: str::as_bytes
199/// [`get`]: str::get
200/// [`is_char_boundary`]: str::is_char_boundary
201///
202/// The [`bytes`] and [`chars`] methods return iterators over the bytes and
203/// codepoints of the string, respectively. To iterate over codepoints along
204/// with byte indices, use [`char_indices`].
205///
206/// [`bytes`]: str::bytes
207/// [`chars`]: str::chars
208/// [`char_indices`]: str::char_indices
209///
210/// # Deref
211///
212/// `String` implements <code>[Deref]<Target = [str]></code>, and so inherits all of [`str`]'s
213/// methods. In addition, this means that you can pass a `String` to a
214/// function which takes a [`&str`] by using an ampersand (`&`):
215///
216/// ```
217/// fn takes_str(s: &str) { }
218///
219/// let s = String::from("Hello");
220///
221/// takes_str(&s);
222/// ```
223///
224/// This will create a [`&str`] from the `String` and pass it in. This
225/// conversion is very inexpensive, and so generally, functions will accept
226/// [`&str`]s as arguments unless they need a `String` for some specific
227/// reason.
228///
229/// In certain cases Rust doesn't have enough information to make this
230/// conversion, known as [`Deref`] coercion. In the following example a string
231/// slice [`&'a str`][`&str`] implements the trait `TraitExample`, and the function
232/// `example_func` takes anything that implements the trait. In this case Rust
233/// would need to make two implicit conversions, which Rust doesn't have the
234/// means to do. For that reason, the following example will not compile.
235///
236/// ```compile_fail,E0277
237/// trait TraitExample {}
238///
239/// impl<'a> TraitExample for &'a str {}
240///
241/// fn example_func<A: TraitExample>(example_arg: A) {}
242///
243/// let example_string = String::from("example_string");
244/// example_func(&example_string);
245/// ```
246///
247/// There are two options that would work instead. The first would be to
248/// change the line `example_func(&example_string);` to
249/// `example_func(example_string.as_str());`, using the method [`as_str()`]
250/// to explicitly extract the string slice containing the string. The second
251/// way changes `example_func(&example_string);` to
252/// `example_func(&*example_string);`. In this case we are dereferencing a
253/// `String` to a [`str`], then referencing the [`str`] back to
254/// [`&str`]. The second way is more idiomatic, however both work to do the
255/// conversion explicitly rather than relying on the implicit conversion.
256///
257/// # Representation
258///
259/// A `String` is made up of three components: a pointer to some bytes, a
260/// length, and a capacity. The pointer points to the internal buffer which `String`
261/// uses to store its data. The length is the number of bytes currently stored
262/// in the buffer, and the capacity is the size of the buffer in bytes. As such,
263/// the length will always be less than or equal to the capacity.
264///
265/// This buffer is always stored on the heap.
266///
267/// You can look at these with the [`as_ptr`], [`len`], and [`capacity`]
268/// methods:
269///
270/// ```
271/// use std::mem;
272///
273/// let story = String::from("Once upon a time...");
274///
275// FIXME Update this when vec_into_raw_parts is stabilized
276/// // Prevent automatically dropping the String's data
277/// let mut story = mem::ManuallyDrop::new(story);
278///
279/// let ptr = story.as_mut_ptr();
280/// let len = story.len();
281/// let capacity = story.capacity();
282///
283/// // story has nineteen bytes
284/// assert_eq!(19, len);
285///
286/// // We can re-build a String out of ptr, len, and capacity. This is all
287/// // unsafe because we are responsible for making sure the components are
288/// // valid:
289/// let s = unsafe { String::from_raw_parts(ptr, len, capacity) } ;
290///
291/// assert_eq!(String::from("Once upon a time..."), s);
292/// ```
293///
294/// [`as_ptr`]: str::as_ptr
295/// [`len`]: String::len
296/// [`capacity`]: String::capacity
297///
298/// If a `String` has enough capacity, adding elements to it will not
299/// re-allocate. For example, consider this program:
300///
301/// ```
302/// let mut s = String::new();
303///
304/// println!("{}", s.capacity());
305///
306/// for _ in 0..5 {
307///     s.push_str("hello");
308///     println!("{}", s.capacity());
309/// }
310/// ```
311///
312/// This will output the following:
313///
314/// ```text
315/// 0
316/// 8
317/// 16
318/// 16
319/// 32
320/// 32
321/// ```
322///
323/// At first, we have no memory allocated at all, but as we append to the
324/// string, it increases its capacity appropriately. If we instead use the
325/// [`with_capacity`] method to allocate the correct capacity initially:
326///
327/// ```
328/// let mut s = String::with_capacity(25);
329///
330/// println!("{}", s.capacity());
331///
332/// for _ in 0..5 {
333///     s.push_str("hello");
334///     println!("{}", s.capacity());
335/// }
336/// ```
337///
338/// [`with_capacity`]: String::with_capacity
339///
340/// We end up with a different output:
341///
342/// ```text
343/// 25
344/// 25
345/// 25
346/// 25
347/// 25
348/// 25
349/// ```
350///
351/// Here, there's no need to allocate more memory inside the loop.
352///
353/// [str]: prim@str "str"
354/// [`str`]: prim@str "str"
355/// [`&str`]: prim@str "&str"
356/// [Deref]: core::ops::Deref "ops::Deref"
357/// [`Deref`]: core::ops::Deref "ops::Deref"
358/// [`as_str()`]: String::as_str
359#[derive(PartialEq, PartialOrd, Eq, Ord)]
360#[stable(feature = "rust1", since = "1.0.0")]
361#[cfg_attr(not(test), lang = "String")]
362pub struct String {
363    vec: Vec<u8>,
364}
365
366/// A possible error value when converting a `String` from a UTF-8 byte vector.
367///
368/// This type is the error type for the [`from_utf8`] method on [`String`]. It
369/// is designed in such a way to carefully avoid reallocations: the
370/// [`into_bytes`] method will give back the byte vector that was used in the
371/// conversion attempt.
372///
373/// [`from_utf8`]: String::from_utf8
374/// [`into_bytes`]: FromUtf8Error::into_bytes
375///
376/// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
377/// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
378/// an analogue to `FromUtf8Error`, and you can get one from a `FromUtf8Error`
379/// through the [`utf8_error`] method.
380///
381/// [`Utf8Error`]: str::Utf8Error "std::str::Utf8Error"
382/// [`std::str`]: core::str "std::str"
383/// [`&str`]: prim@str "&str"
384/// [`utf8_error`]: FromUtf8Error::utf8_error
385///
386/// # Examples
387///
388/// ```
389/// // some invalid bytes, in a vector
390/// let bytes = vec![0, 159];
391///
392/// let value = String::from_utf8(bytes);
393///
394/// assert!(value.is_err());
395/// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
396/// ```
397#[stable(feature = "rust1", since = "1.0.0")]
398#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
399#[derive(Debug, PartialEq, Eq)]
400pub struct FromUtf8Error {
401    bytes: Vec<u8>,
402    error: Utf8Error,
403}
404
405/// A possible error value when converting a `String` from a UTF-16 byte slice.
406///
407/// This type is the error type for the [`from_utf16`] method on [`String`].
408///
409/// [`from_utf16`]: String::from_utf16
410///
411/// # Examples
412///
413/// ```
414/// // 𝄞mu<invalid>ic
415/// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
416///           0xD800, 0x0069, 0x0063];
417///
418/// assert!(String::from_utf16(v).is_err());
419/// ```
420#[stable(feature = "rust1", since = "1.0.0")]
421#[derive(Debug)]
422pub struct FromUtf16Error(());
423
424impl String {
425    /// Creates a new empty `String`.
426    ///
427    /// Given that the `String` is empty, this will not allocate any initial
428    /// buffer. While that means that this initial operation is very
429    /// inexpensive, it may cause excessive allocation later when you add
430    /// data. If you have an idea of how much data the `String` will hold,
431    /// consider the [`with_capacity`] method to prevent excessive
432    /// re-allocation.
433    ///
434    /// [`with_capacity`]: String::with_capacity
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// let s = String::new();
440    /// ```
441    #[inline]
442    #[rustc_const_stable(feature = "const_string_new", since = "1.39.0")]
443    #[cfg_attr(not(test), rustc_diagnostic_item = "string_new")]
444    #[stable(feature = "rust1", since = "1.0.0")]
445    #[must_use]
446    pub const fn new() -> String {
447        String { vec: Vec::new() }
448    }
449
450    /// Creates a new empty `String` with at least the specified capacity.
451    ///
452    /// `String`s have an internal buffer to hold their data. The capacity is
453    /// the length of that buffer, and can be queried with the [`capacity`]
454    /// method. This method creates an empty `String`, but one with an initial
455    /// buffer that can hold at least `capacity` bytes. This is useful when you
456    /// may be appending a bunch of data to the `String`, reducing the number of
457    /// reallocations it needs to do.
458    ///
459    /// [`capacity`]: String::capacity
460    ///
461    /// If the given capacity is `0`, no allocation will occur, and this method
462    /// is identical to the [`new`] method.
463    ///
464    /// [`new`]: String::new
465    ///
466    /// # Examples
467    ///
468    /// ```
469    /// let mut s = String::with_capacity(10);
470    ///
471    /// // The String contains no chars, even though it has capacity for more
472    /// assert_eq!(s.len(), 0);
473    ///
474    /// // These are all done without reallocating...
475    /// let cap = s.capacity();
476    /// for _ in 0..10 {
477    ///     s.push('a');
478    /// }
479    ///
480    /// assert_eq!(s.capacity(), cap);
481    ///
482    /// // ...but this may make the string reallocate
483    /// s.push('a');
484    /// ```
485    #[cfg(not(no_global_oom_handling))]
486    #[inline]
487    #[stable(feature = "rust1", since = "1.0.0")]
488    #[must_use]
489    pub fn with_capacity(capacity: usize) -> String {
490        String { vec: Vec::with_capacity(capacity) }
491    }
492
493    /// Creates a new empty `String` with at least the specified capacity.
494    ///
495    /// # Errors
496    ///
497    /// Returns [`Err`] if the capacity exceeds `isize::MAX` bytes,
498    /// or if the memory allocator reports failure.
499    ///
500    #[inline]
501    #[unstable(feature = "try_with_capacity", issue = "91913")]
502    pub fn try_with_capacity(capacity: usize) -> Result<String, TryReserveError> {
503        Ok(String { vec: Vec::try_with_capacity(capacity)? })
504    }
505
506    // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
507    // required for this method definition, is not available. Since we don't
508    // require this method for testing purposes, I'll just stub it
509    // NB see the slice::hack module in slice.rs for more information
510    #[inline]
511    #[cfg(test)]
512    #[allow(missing_docs)]
513    pub fn from_str(_: &str) -> String {
514        panic!("not available with cfg(test)");
515    }
516
517    /// Converts a vector of bytes to a `String`.
518    ///
519    /// A string ([`String`]) is made of bytes ([`u8`]), and a vector of bytes
520    /// ([`Vec<u8>`]) is made of bytes, so this function converts between the
521    /// two. Not all byte slices are valid `String`s, however: `String`
522    /// requires that it is valid UTF-8. `from_utf8()` checks to ensure that
523    /// the bytes are valid UTF-8, and then does the conversion.
524    ///
525    /// If you are sure that the byte slice is valid UTF-8, and you don't want
526    /// to incur the overhead of the validity check, there is an unsafe version
527    /// of this function, [`from_utf8_unchecked`], which has the same behavior
528    /// but skips the check.
529    ///
530    /// This method will take care to not copy the vector, for efficiency's
531    /// sake.
532    ///
533    /// If you need a [`&str`] instead of a `String`, consider
534    /// [`str::from_utf8`].
535    ///
536    /// The inverse of this method is [`into_bytes`].
537    ///
538    /// # Errors
539    ///
540    /// Returns [`Err`] if the slice is not UTF-8 with a description as to why the
541    /// provided bytes are not UTF-8. The vector you moved in is also included.
542    ///
543    /// # Examples
544    ///
545    /// Basic usage:
546    ///
547    /// ```
548    /// // some bytes, in a vector
549    /// let sparkle_heart = vec![240, 159, 146, 150];
550    ///
551    /// // We know these bytes are valid, so we'll use `unwrap()`.
552    /// let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();
553    ///
554    /// assert_eq!("💖", sparkle_heart);
555    /// ```
556    ///
557    /// Incorrect bytes:
558    ///
559    /// ```
560    /// // some invalid bytes, in a vector
561    /// let sparkle_heart = vec![0, 159, 146, 150];
562    ///
563    /// assert!(String::from_utf8(sparkle_heart).is_err());
564    /// ```
565    ///
566    /// See the docs for [`FromUtf8Error`] for more details on what you can do
567    /// with this error.
568    ///
569    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
570    /// [`Vec<u8>`]: crate::vec::Vec "Vec"
571    /// [`&str`]: prim@str "&str"
572    /// [`into_bytes`]: String::into_bytes
573    #[inline]
574    #[stable(feature = "rust1", since = "1.0.0")]
575    #[cfg_attr(not(test), rustc_diagnostic_item = "string_from_utf8")]
576    pub fn from_utf8(vec: Vec<u8>) -> Result<String, FromUtf8Error> {
577        match str::from_utf8(&vec) {
578            Ok(..) => Ok(String { vec }),
579            Err(e) => Err(FromUtf8Error { bytes: vec, error: e }),
580        }
581    }
582
583    /// Converts a slice of bytes to a string, including invalid characters.
584    ///
585    /// Strings are made of bytes ([`u8`]), and a slice of bytes
586    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts
587    /// between the two. Not all byte slices are valid strings, however: strings
588    /// are required to be valid UTF-8. During this conversion,
589    /// `from_utf8_lossy()` will replace any invalid UTF-8 sequences with
590    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD], which looks like this: �
591    ///
592    /// [byteslice]: prim@slice
593    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
594    ///
595    /// If you are sure that the byte slice is valid UTF-8, and you don't want
596    /// to incur the overhead of the conversion, there is an unsafe version
597    /// of this function, [`from_utf8_unchecked`], which has the same behavior
598    /// but skips the checks.
599    ///
600    /// [`from_utf8_unchecked`]: String::from_utf8_unchecked
601    ///
602    /// This function returns a [`Cow<'a, str>`]. If our byte slice is invalid
603    /// UTF-8, then we need to insert the replacement characters, which will
604    /// change the size of the string, and hence, require a `String`. But if
605    /// it's already valid UTF-8, we don't need a new allocation. This return
606    /// type allows us to handle both cases.
607    ///
608    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
609    ///
610    /// # Examples
611    ///
612    /// Basic usage:
613    ///
614    /// ```
615    /// // some bytes, in a vector
616    /// let sparkle_heart = vec![240, 159, 146, 150];
617    ///
618    /// let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);
619    ///
620    /// assert_eq!("💖", sparkle_heart);
621    /// ```
622    ///
623    /// Incorrect bytes:
624    ///
625    /// ```
626    /// // some invalid bytes
627    /// let input = b"Hello \xF0\x90\x80World";
628    /// let output = String::from_utf8_lossy(input);
629    ///
630    /// assert_eq!("Hello �World", output);
631    /// ```
632    #[must_use]
633    #[cfg(not(no_global_oom_handling))]
634    #[stable(feature = "rust1", since = "1.0.0")]
635    pub fn from_utf8_lossy(v: &[u8]) -> Cow<'_, str> {
636        let mut iter = v.utf8_chunks();
637
638        let first_valid = if let Some(chunk) = iter.next() {
639            let valid = chunk.valid();
640            if chunk.invalid().is_empty() {
641                debug_assert_eq!(valid.len(), v.len());
642                return Cow::Borrowed(valid);
643            }
644            valid
645        } else {
646            return Cow::Borrowed("");
647        };
648
649        const REPLACEMENT: &str = "\u{FFFD}";
650
651        let mut res = String::with_capacity(v.len());
652        res.push_str(first_valid);
653        res.push_str(REPLACEMENT);
654
655        for chunk in iter {
656            res.push_str(chunk.valid());
657            if !chunk.invalid().is_empty() {
658                res.push_str(REPLACEMENT);
659            }
660        }
661
662        Cow::Owned(res)
663    }
664
665    /// Converts a [`Vec<u8>`] to a `String`, substituting invalid UTF-8
666    /// sequences with replacement characters.
667    ///
668    /// See [`from_utf8_lossy`] for more details.
669    ///
670    /// [`from_utf8_lossy`]: String::from_utf8_lossy
671    ///
672    /// Note that this function does not guarantee reuse of the original `Vec`
673    /// allocation.
674    ///
675    /// # Examples
676    ///
677    /// Basic usage:
678    ///
679    /// ```
680    /// #![feature(string_from_utf8_lossy_owned)]
681    /// // some bytes, in a vector
682    /// let sparkle_heart = vec![240, 159, 146, 150];
683    ///
684    /// let sparkle_heart = String::from_utf8_lossy_owned(sparkle_heart);
685    ///
686    /// assert_eq!(String::from("💖"), sparkle_heart);
687    /// ```
688    ///
689    /// Incorrect bytes:
690    ///
691    /// ```
692    /// #![feature(string_from_utf8_lossy_owned)]
693    /// // some invalid bytes
694    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
695    /// let output = String::from_utf8_lossy_owned(input);
696    ///
697    /// assert_eq!(String::from("Hello �World"), output);
698    /// ```
699    #[must_use]
700    #[cfg(not(no_global_oom_handling))]
701    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
702    pub fn from_utf8_lossy_owned(v: Vec<u8>) -> String {
703        if let Cow::Owned(string) = String::from_utf8_lossy(&v) {
704            string
705        } else {
706            // SAFETY: `String::from_utf8_lossy`'s contract ensures that if
707            // it returns a `Cow::Borrowed`, it is a valid UTF-8 string.
708            // Otherwise, it returns a new allocation of an owned `String`, with
709            // replacement characters for invalid sequences, which is returned
710            // above.
711            unsafe { String::from_utf8_unchecked(v) }
712        }
713    }
714
715    /// Decode a native endian UTF-16–encoded vector `v` into a `String`,
716    /// returning [`Err`] if `v` contains any invalid data.
717    ///
718    /// # Examples
719    ///
720    /// ```
721    /// // 𝄞music
722    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
723    ///           0x0073, 0x0069, 0x0063];
724    /// assert_eq!(String::from("𝄞music"),
725    ///            String::from_utf16(v).unwrap());
726    ///
727    /// // 𝄞mu<invalid>ic
728    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
729    ///           0xD800, 0x0069, 0x0063];
730    /// assert!(String::from_utf16(v).is_err());
731    /// ```
732    #[cfg(not(no_global_oom_handling))]
733    #[stable(feature = "rust1", since = "1.0.0")]
734    pub fn from_utf16(v: &[u16]) -> Result<String, FromUtf16Error> {
735        // This isn't done via collect::<Result<_, _>>() for performance reasons.
736        // FIXME: the function can be simplified again when #48994 is closed.
737        let mut ret = String::with_capacity(v.len());
738        for c in char::decode_utf16(v.iter().cloned()) {
739            if let Ok(c) = c {
740                ret.push(c);
741            } else {
742                return Err(FromUtf16Error(()));
743            }
744        }
745        Ok(ret)
746    }
747
748    /// Decode a native endian UTF-16–encoded slice `v` into a `String`,
749    /// replacing invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
750    ///
751    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
752    /// `from_utf16_lossy` returns a `String` since the UTF-16 to UTF-8
753    /// conversion requires a memory allocation.
754    ///
755    /// [`from_utf8_lossy`]: String::from_utf8_lossy
756    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
757    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
758    ///
759    /// # Examples
760    ///
761    /// ```
762    /// // 𝄞mus<invalid>ic<invalid>
763    /// let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
764    ///           0x0073, 0xDD1E, 0x0069, 0x0063,
765    ///           0xD834];
766    ///
767    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
768    ///            String::from_utf16_lossy(v));
769    /// ```
770    #[cfg(not(no_global_oom_handling))]
771    #[must_use]
772    #[inline]
773    #[stable(feature = "rust1", since = "1.0.0")]
774    pub fn from_utf16_lossy(v: &[u16]) -> String {
775        char::decode_utf16(v.iter().cloned())
776            .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
777            .collect()
778    }
779
780    /// Decode a UTF-16LE–encoded vector `v` into a `String`,
781    /// returning [`Err`] if `v` contains any invalid data.
782    ///
783    /// # Examples
784    ///
785    /// Basic usage:
786    ///
787    /// ```
788    /// #![feature(str_from_utf16_endian)]
789    /// // 𝄞music
790    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
791    ///           0x73, 0x00, 0x69, 0x00, 0x63, 0x00];
792    /// assert_eq!(String::from("𝄞music"),
793    ///            String::from_utf16le(v).unwrap());
794    ///
795    /// // 𝄞mu<invalid>ic
796    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
797    ///           0x00, 0xD8, 0x69, 0x00, 0x63, 0x00];
798    /// assert!(String::from_utf16le(v).is_err());
799    /// ```
800    #[cfg(not(no_global_oom_handling))]
801    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
802    pub fn from_utf16le(v: &[u8]) -> Result<String, FromUtf16Error> {
803        if v.len() % 2 != 0 {
804            return Err(FromUtf16Error(()));
805        }
806        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
807            (true, ([], v, [])) => Self::from_utf16(v),
808            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_le_bytes))
809                .collect::<Result<_, _>>()
810                .map_err(|_| FromUtf16Error(())),
811        }
812    }
813
814    /// Decode a UTF-16LE–encoded slice `v` into a `String`, replacing
815    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
816    ///
817    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
818    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
819    /// conversion requires a memory allocation.
820    ///
821    /// [`from_utf8_lossy`]: String::from_utf8_lossy
822    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
823    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
824    ///
825    /// # Examples
826    ///
827    /// Basic usage:
828    ///
829    /// ```
830    /// #![feature(str_from_utf16_endian)]
831    /// // 𝄞mus<invalid>ic<invalid>
832    /// let v = &[0x34, 0xD8, 0x1E, 0xDD, 0x6d, 0x00, 0x75, 0x00,
833    ///           0x73, 0x00, 0x1E, 0xDD, 0x69, 0x00, 0x63, 0x00,
834    ///           0x34, 0xD8];
835    ///
836    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
837    ///            String::from_utf16le_lossy(v));
838    /// ```
839    #[cfg(not(no_global_oom_handling))]
840    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
841    pub fn from_utf16le_lossy(v: &[u8]) -> String {
842        match (cfg!(target_endian = "little"), unsafe { v.align_to::<u16>() }) {
843            (true, ([], v, [])) => Self::from_utf16_lossy(v),
844            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
845            _ => {
846                let mut iter = v.array_chunks::<2>();
847                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_le_bytes))
848                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
849                    .collect();
850                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
851            }
852        }
853    }
854
855    /// Decode a UTF-16BE–encoded vector `v` into a `String`,
856    /// returning [`Err`] if `v` contains any invalid data.
857    ///
858    /// # Examples
859    ///
860    /// Basic usage:
861    ///
862    /// ```
863    /// #![feature(str_from_utf16_endian)]
864    /// // 𝄞music
865    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
866    ///           0x00, 0x73, 0x00, 0x69, 0x00, 0x63];
867    /// assert_eq!(String::from("𝄞music"),
868    ///            String::from_utf16be(v).unwrap());
869    ///
870    /// // 𝄞mu<invalid>ic
871    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
872    ///           0xD8, 0x00, 0x00, 0x69, 0x00, 0x63];
873    /// assert!(String::from_utf16be(v).is_err());
874    /// ```
875    #[cfg(not(no_global_oom_handling))]
876    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
877    pub fn from_utf16be(v: &[u8]) -> Result<String, FromUtf16Error> {
878        if v.len() % 2 != 0 {
879            return Err(FromUtf16Error(()));
880        }
881        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
882            (true, ([], v, [])) => Self::from_utf16(v),
883            _ => char::decode_utf16(v.array_chunks::<2>().copied().map(u16::from_be_bytes))
884                .collect::<Result<_, _>>()
885                .map_err(|_| FromUtf16Error(())),
886        }
887    }
888
889    /// Decode a UTF-16BE–encoded slice `v` into a `String`, replacing
890    /// invalid data with [the replacement character (`U+FFFD`)][U+FFFD].
891    ///
892    /// Unlike [`from_utf8_lossy`] which returns a [`Cow<'a, str>`],
893    /// `from_utf16le_lossy` returns a `String` since the UTF-16 to UTF-8
894    /// conversion requires a memory allocation.
895    ///
896    /// [`from_utf8_lossy`]: String::from_utf8_lossy
897    /// [`Cow<'a, str>`]: crate::borrow::Cow "borrow::Cow"
898    /// [U+FFFD]: core::char::REPLACEMENT_CHARACTER
899    ///
900    /// # Examples
901    ///
902    /// Basic usage:
903    ///
904    /// ```
905    /// #![feature(str_from_utf16_endian)]
906    /// // 𝄞mus<invalid>ic<invalid>
907    /// let v = &[0xD8, 0x34, 0xDD, 0x1E, 0x00, 0x6d, 0x00, 0x75,
908    ///           0x00, 0x73, 0xDD, 0x1E, 0x00, 0x69, 0x00, 0x63,
909    ///           0xD8, 0x34];
910    ///
911    /// assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
912    ///            String::from_utf16be_lossy(v));
913    /// ```
914    #[cfg(not(no_global_oom_handling))]
915    #[unstable(feature = "str_from_utf16_endian", issue = "116258")]
916    pub fn from_utf16be_lossy(v: &[u8]) -> String {
917        match (cfg!(target_endian = "big"), unsafe { v.align_to::<u16>() }) {
918            (true, ([], v, [])) => Self::from_utf16_lossy(v),
919            (true, ([], v, [_remainder])) => Self::from_utf16_lossy(v) + "\u{FFFD}",
920            _ => {
921                let mut iter = v.array_chunks::<2>();
922                let string = char::decode_utf16(iter.by_ref().copied().map(u16::from_be_bytes))
923                    .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
924                    .collect();
925                if iter.remainder().is_empty() { string } else { string + "\u{FFFD}" }
926            }
927        }
928    }
929
930    /// Decomposes a `String` into its raw components: `(pointer, length, capacity)`.
931    ///
932    /// Returns the raw pointer to the underlying data, the length of
933    /// the string (in bytes), and the allocated capacity of the data
934    /// (in bytes). These are the same arguments in the same order as
935    /// the arguments to [`from_raw_parts`].
936    ///
937    /// After calling this function, the caller is responsible for the
938    /// memory previously managed by the `String`. The only way to do
939    /// this is to convert the raw pointer, length, and capacity back
940    /// into a `String` with the [`from_raw_parts`] function, allowing
941    /// the destructor to perform the cleanup.
942    ///
943    /// [`from_raw_parts`]: String::from_raw_parts
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// #![feature(vec_into_raw_parts)]
949    /// let s = String::from("hello");
950    ///
951    /// let (ptr, len, cap) = s.into_raw_parts();
952    ///
953    /// let rebuilt = unsafe { String::from_raw_parts(ptr, len, cap) };
954    /// assert_eq!(rebuilt, "hello");
955    /// ```
956    #[must_use = "losing the pointer will leak memory"]
957    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
958    pub fn into_raw_parts(self) -> (*mut u8, usize, usize) {
959        self.vec.into_raw_parts()
960    }
961
962    /// Creates a new `String` from a pointer, a length and a capacity.
963    ///
964    /// # Safety
965    ///
966    /// This is highly unsafe, due to the number of invariants that aren't
967    /// checked:
968    ///
969    /// * The memory at `buf` needs to have been previously allocated by the
970    ///   same allocator the standard library uses, with a required alignment of exactly 1.
971    /// * `length` needs to be less than or equal to `capacity`.
972    /// * `capacity` needs to be the correct value.
973    /// * The first `length` bytes at `buf` need to be valid UTF-8.
974    ///
975    /// Violating these may cause problems like corrupting the allocator's
976    /// internal data structures. For example, it is normally **not** safe to
977    /// build a `String` from a pointer to a C `char` array containing UTF-8
978    /// _unless_ you are certain that array was originally allocated by the
979    /// Rust standard library's allocator.
980    ///
981    /// The ownership of `buf` is effectively transferred to the
982    /// `String` which may then deallocate, reallocate or change the
983    /// contents of memory pointed to by the pointer at will. Ensure
984    /// that nothing else uses the pointer after calling this
985    /// function.
986    ///
987    /// # Examples
988    ///
989    /// ```
990    /// use std::mem;
991    ///
992    /// unsafe {
993    ///     let s = String::from("hello");
994    ///
995    // FIXME Update this when vec_into_raw_parts is stabilized
996    ///     // Prevent automatically dropping the String's data
997    ///     let mut s = mem::ManuallyDrop::new(s);
998    ///
999    ///     let ptr = s.as_mut_ptr();
1000    ///     let len = s.len();
1001    ///     let capacity = s.capacity();
1002    ///
1003    ///     let s = String::from_raw_parts(ptr, len, capacity);
1004    ///
1005    ///     assert_eq!(String::from("hello"), s);
1006    /// }
1007    /// ```
1008    #[inline]
1009    #[stable(feature = "rust1", since = "1.0.0")]
1010    pub unsafe fn from_raw_parts(buf: *mut u8, length: usize, capacity: usize) -> String {
1011        unsafe { String { vec: Vec::from_raw_parts(buf, length, capacity) } }
1012    }
1013
1014    /// Converts a vector of bytes to a `String` without checking that the
1015    /// string contains valid UTF-8.
1016    ///
1017    /// See the safe version, [`from_utf8`], for more details.
1018    ///
1019    /// [`from_utf8`]: String::from_utf8
1020    ///
1021    /// # Safety
1022    ///
1023    /// This function is unsafe because it does not check that the bytes passed
1024    /// to it are valid UTF-8. If this constraint is violated, it may cause
1025    /// memory unsafety issues with future users of the `String`, as the rest of
1026    /// the standard library assumes that `String`s are valid UTF-8.
1027    ///
1028    /// # Examples
1029    ///
1030    /// ```
1031    /// // some bytes, in a vector
1032    /// let sparkle_heart = vec![240, 159, 146, 150];
1033    ///
1034    /// let sparkle_heart = unsafe {
1035    ///     String::from_utf8_unchecked(sparkle_heart)
1036    /// };
1037    ///
1038    /// assert_eq!("💖", sparkle_heart);
1039    /// ```
1040    #[inline]
1041    #[must_use]
1042    #[stable(feature = "rust1", since = "1.0.0")]
1043    pub unsafe fn from_utf8_unchecked(bytes: Vec<u8>) -> String {
1044        String { vec: bytes }
1045    }
1046
1047    /// Converts a `String` into a byte vector.
1048    ///
1049    /// This consumes the `String`, so we do not need to copy its contents.
1050    ///
1051    /// # Examples
1052    ///
1053    /// ```
1054    /// let s = String::from("hello");
1055    /// let bytes = s.into_bytes();
1056    ///
1057    /// assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);
1058    /// ```
1059    #[inline]
1060    #[must_use = "`self` will be dropped if the result is not used"]
1061    #[stable(feature = "rust1", since = "1.0.0")]
1062    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1063    pub const fn into_bytes(self) -> Vec<u8> {
1064        self.vec
1065    }
1066
1067    /// Extracts a string slice containing the entire `String`.
1068    ///
1069    /// # Examples
1070    ///
1071    /// ```
1072    /// let s = String::from("foo");
1073    ///
1074    /// assert_eq!("foo", s.as_str());
1075    /// ```
1076    #[inline]
1077    #[must_use]
1078    #[stable(feature = "string_as_str", since = "1.7.0")]
1079    #[cfg_attr(not(test), rustc_diagnostic_item = "string_as_str")]
1080    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1081    pub const fn as_str(&self) -> &str {
1082        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1083        // at construction.
1084        unsafe { str::from_utf8_unchecked(self.vec.as_slice()) }
1085    }
1086
1087    /// Converts a `String` into a mutable string slice.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// let mut s = String::from("foobar");
1093    /// let s_mut_str = s.as_mut_str();
1094    ///
1095    /// s_mut_str.make_ascii_uppercase();
1096    ///
1097    /// assert_eq!("FOOBAR", s_mut_str);
1098    /// ```
1099    #[inline]
1100    #[must_use]
1101    #[stable(feature = "string_as_str", since = "1.7.0")]
1102    #[cfg_attr(not(test), rustc_diagnostic_item = "string_as_mut_str")]
1103    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1104    pub const fn as_mut_str(&mut self) -> &mut str {
1105        // SAFETY: String contents are stipulated to be valid UTF-8, invalid contents are an error
1106        // at construction.
1107        unsafe { str::from_utf8_unchecked_mut(self.vec.as_mut_slice()) }
1108    }
1109
1110    /// Appends a given string slice onto the end of this `String`.
1111    ///
1112    /// # Examples
1113    ///
1114    /// ```
1115    /// let mut s = String::from("foo");
1116    ///
1117    /// s.push_str("bar");
1118    ///
1119    /// assert_eq!("foobar", s);
1120    /// ```
1121    #[cfg(not(no_global_oom_handling))]
1122    #[inline]
1123    #[stable(feature = "rust1", since = "1.0.0")]
1124    #[rustc_confusables("append", "push")]
1125    #[cfg_attr(not(test), rustc_diagnostic_item = "string_push_str")]
1126    pub fn push_str(&mut self, string: &str) {
1127        self.vec.extend_from_slice(string.as_bytes())
1128    }
1129
1130    /// Copies elements from `src` range to the end of the string.
1131    ///
1132    /// # Panics
1133    ///
1134    /// Panics if the starting point or end point do not lie on a [`char`]
1135    /// boundary, or if they're out of bounds.
1136    ///
1137    /// # Examples
1138    ///
1139    /// ```
1140    /// #![feature(string_extend_from_within)]
1141    /// let mut string = String::from("abcde");
1142    ///
1143    /// string.extend_from_within(2..);
1144    /// assert_eq!(string, "abcdecde");
1145    ///
1146    /// string.extend_from_within(..2);
1147    /// assert_eq!(string, "abcdecdeab");
1148    ///
1149    /// string.extend_from_within(4..8);
1150    /// assert_eq!(string, "abcdecdeabecde");
1151    /// ```
1152    #[cfg(not(no_global_oom_handling))]
1153    #[unstable(feature = "string_extend_from_within", issue = "103806")]
1154    pub fn extend_from_within<R>(&mut self, src: R)
1155    where
1156        R: RangeBounds<usize>,
1157    {
1158        let src @ Range { start, end } = slice::range(src, ..self.len());
1159
1160        assert!(self.is_char_boundary(start));
1161        assert!(self.is_char_boundary(end));
1162
1163        self.vec.extend_from_within(src);
1164    }
1165
1166    /// Returns this `String`'s capacity, in bytes.
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// let s = String::with_capacity(10);
1172    ///
1173    /// assert!(s.capacity() >= 10);
1174    /// ```
1175    #[inline]
1176    #[must_use]
1177    #[stable(feature = "rust1", since = "1.0.0")]
1178    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1179    pub const fn capacity(&self) -> usize {
1180        self.vec.capacity()
1181    }
1182
1183    /// Reserves capacity for at least `additional` bytes more than the
1184    /// current length. The allocator may reserve more space to speculatively
1185    /// avoid frequent allocations. After calling `reserve`,
1186    /// capacity will be greater than or equal to `self.len() + additional`.
1187    /// Does nothing if capacity is already sufficient.
1188    ///
1189    /// # Panics
1190    ///
1191    /// Panics if the new capacity overflows [`usize`].
1192    ///
1193    /// # Examples
1194    ///
1195    /// Basic usage:
1196    ///
1197    /// ```
1198    /// let mut s = String::new();
1199    ///
1200    /// s.reserve(10);
1201    ///
1202    /// assert!(s.capacity() >= 10);
1203    /// ```
1204    ///
1205    /// This might not actually increase the capacity:
1206    ///
1207    /// ```
1208    /// let mut s = String::with_capacity(10);
1209    /// s.push('a');
1210    /// s.push('b');
1211    ///
1212    /// // s now has a length of 2 and a capacity of at least 10
1213    /// let capacity = s.capacity();
1214    /// assert_eq!(2, s.len());
1215    /// assert!(capacity >= 10);
1216    ///
1217    /// // Since we already have at least an extra 8 capacity, calling this...
1218    /// s.reserve(8);
1219    ///
1220    /// // ... doesn't actually increase.
1221    /// assert_eq!(capacity, s.capacity());
1222    /// ```
1223    #[cfg(not(no_global_oom_handling))]
1224    #[inline]
1225    #[stable(feature = "rust1", since = "1.0.0")]
1226    pub fn reserve(&mut self, additional: usize) {
1227        self.vec.reserve(additional)
1228    }
1229
1230    /// Reserves the minimum capacity for at least `additional` bytes more than
1231    /// the current length. Unlike [`reserve`], this will not
1232    /// deliberately over-allocate to speculatively avoid frequent allocations.
1233    /// After calling `reserve_exact`, capacity will be greater than or equal to
1234    /// `self.len() + additional`. Does nothing if the capacity is already
1235    /// sufficient.
1236    ///
1237    /// [`reserve`]: String::reserve
1238    ///
1239    /// # Panics
1240    ///
1241    /// Panics if the new capacity overflows [`usize`].
1242    ///
1243    /// # Examples
1244    ///
1245    /// Basic usage:
1246    ///
1247    /// ```
1248    /// let mut s = String::new();
1249    ///
1250    /// s.reserve_exact(10);
1251    ///
1252    /// assert!(s.capacity() >= 10);
1253    /// ```
1254    ///
1255    /// This might not actually increase the capacity:
1256    ///
1257    /// ```
1258    /// let mut s = String::with_capacity(10);
1259    /// s.push('a');
1260    /// s.push('b');
1261    ///
1262    /// // s now has a length of 2 and a capacity of at least 10
1263    /// let capacity = s.capacity();
1264    /// assert_eq!(2, s.len());
1265    /// assert!(capacity >= 10);
1266    ///
1267    /// // Since we already have at least an extra 8 capacity, calling this...
1268    /// s.reserve_exact(8);
1269    ///
1270    /// // ... doesn't actually increase.
1271    /// assert_eq!(capacity, s.capacity());
1272    /// ```
1273    #[cfg(not(no_global_oom_handling))]
1274    #[inline]
1275    #[stable(feature = "rust1", since = "1.0.0")]
1276    pub fn reserve_exact(&mut self, additional: usize) {
1277        self.vec.reserve_exact(additional)
1278    }
1279
1280    /// Tries to reserve capacity for at least `additional` bytes more than the
1281    /// current length. The allocator may reserve more space to speculatively
1282    /// avoid frequent allocations. After calling `try_reserve`, capacity will be
1283    /// greater than or equal to `self.len() + additional` if it returns
1284    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1285    /// preserves the contents even if an error occurs.
1286    ///
1287    /// # Errors
1288    ///
1289    /// If the capacity overflows, or the allocator reports a failure, then an error
1290    /// is returned.
1291    ///
1292    /// # Examples
1293    ///
1294    /// ```
1295    /// use std::collections::TryReserveError;
1296    ///
1297    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1298    ///     let mut output = String::new();
1299    ///
1300    ///     // Pre-reserve the memory, exiting if we can't
1301    ///     output.try_reserve(data.len())?;
1302    ///
1303    ///     // Now we know this can't OOM in the middle of our complex work
1304    ///     output.push_str(data);
1305    ///
1306    ///     Ok(output)
1307    /// }
1308    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1309    /// ```
1310    #[stable(feature = "try_reserve", since = "1.57.0")]
1311    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1312        self.vec.try_reserve(additional)
1313    }
1314
1315    /// Tries to reserve the minimum capacity for at least `additional` bytes
1316    /// more than the current length. Unlike [`try_reserve`], this will not
1317    /// deliberately over-allocate to speculatively avoid frequent allocations.
1318    /// After calling `try_reserve_exact`, capacity will be greater than or
1319    /// equal to `self.len() + additional` if it returns `Ok(())`.
1320    /// Does nothing if the capacity is already sufficient.
1321    ///
1322    /// Note that the allocator may give the collection more space than it
1323    /// requests. Therefore, capacity can not be relied upon to be precisely
1324    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1325    ///
1326    /// [`try_reserve`]: String::try_reserve
1327    ///
1328    /// # Errors
1329    ///
1330    /// If the capacity overflows, or the allocator reports a failure, then an error
1331    /// is returned.
1332    ///
1333    /// # Examples
1334    ///
1335    /// ```
1336    /// use std::collections::TryReserveError;
1337    ///
1338    /// fn process_data(data: &str) -> Result<String, TryReserveError> {
1339    ///     let mut output = String::new();
1340    ///
1341    ///     // Pre-reserve the memory, exiting if we can't
1342    ///     output.try_reserve_exact(data.len())?;
1343    ///
1344    ///     // Now we know this can't OOM in the middle of our complex work
1345    ///     output.push_str(data);
1346    ///
1347    ///     Ok(output)
1348    /// }
1349    /// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
1350    /// ```
1351    #[stable(feature = "try_reserve", since = "1.57.0")]
1352    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1353        self.vec.try_reserve_exact(additional)
1354    }
1355
1356    /// Shrinks the capacity of this `String` to match its length.
1357    ///
1358    /// # Examples
1359    ///
1360    /// ```
1361    /// let mut s = String::from("foo");
1362    ///
1363    /// s.reserve(100);
1364    /// assert!(s.capacity() >= 100);
1365    ///
1366    /// s.shrink_to_fit();
1367    /// assert_eq!(3, s.capacity());
1368    /// ```
1369    #[cfg(not(no_global_oom_handling))]
1370    #[inline]
1371    #[stable(feature = "rust1", since = "1.0.0")]
1372    pub fn shrink_to_fit(&mut self) {
1373        self.vec.shrink_to_fit()
1374    }
1375
1376    /// Shrinks the capacity of this `String` with a lower bound.
1377    ///
1378    /// The capacity will remain at least as large as both the length
1379    /// and the supplied value.
1380    ///
1381    /// If the current capacity is less than the lower limit, this is a no-op.
1382    ///
1383    /// # Examples
1384    ///
1385    /// ```
1386    /// let mut s = String::from("foo");
1387    ///
1388    /// s.reserve(100);
1389    /// assert!(s.capacity() >= 100);
1390    ///
1391    /// s.shrink_to(10);
1392    /// assert!(s.capacity() >= 10);
1393    /// s.shrink_to(0);
1394    /// assert!(s.capacity() >= 3);
1395    /// ```
1396    #[cfg(not(no_global_oom_handling))]
1397    #[inline]
1398    #[stable(feature = "shrink_to", since = "1.56.0")]
1399    pub fn shrink_to(&mut self, min_capacity: usize) {
1400        self.vec.shrink_to(min_capacity)
1401    }
1402
1403    /// Appends the given [`char`] to the end of this `String`.
1404    ///
1405    /// # Examples
1406    ///
1407    /// ```
1408    /// let mut s = String::from("abc");
1409    ///
1410    /// s.push('1');
1411    /// s.push('2');
1412    /// s.push('3');
1413    ///
1414    /// assert_eq!("abc123", s);
1415    /// ```
1416    #[cfg(not(no_global_oom_handling))]
1417    #[inline]
1418    #[stable(feature = "rust1", since = "1.0.0")]
1419    pub fn push(&mut self, ch: char) {
1420        match ch.len_utf8() {
1421            1 => self.vec.push(ch as u8),
1422            _ => self.vec.extend_from_slice(ch.encode_utf8(&mut [0; 4]).as_bytes()),
1423        }
1424    }
1425
1426    /// Returns a byte slice of this `String`'s contents.
1427    ///
1428    /// The inverse of this method is [`from_utf8`].
1429    ///
1430    /// [`from_utf8`]: String::from_utf8
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```
1435    /// let s = String::from("hello");
1436    ///
1437    /// assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
1438    /// ```
1439    #[inline]
1440    #[must_use]
1441    #[stable(feature = "rust1", since = "1.0.0")]
1442    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1443    pub const fn as_bytes(&self) -> &[u8] {
1444        self.vec.as_slice()
1445    }
1446
1447    /// Shortens this `String` to the specified length.
1448    ///
1449    /// If `new_len` is greater than or equal to the string's current length, this has no
1450    /// effect.
1451    ///
1452    /// Note that this method has no effect on the allocated capacity
1453    /// of the string
1454    ///
1455    /// # Panics
1456    ///
1457    /// Panics if `new_len` does not lie on a [`char`] boundary.
1458    ///
1459    /// # Examples
1460    ///
1461    /// ```
1462    /// let mut s = String::from("hello");
1463    ///
1464    /// s.truncate(2);
1465    ///
1466    /// assert_eq!("he", s);
1467    /// ```
1468    #[inline]
1469    #[stable(feature = "rust1", since = "1.0.0")]
1470    pub fn truncate(&mut self, new_len: usize) {
1471        if new_len <= self.len() {
1472            assert!(self.is_char_boundary(new_len));
1473            self.vec.truncate(new_len)
1474        }
1475    }
1476
1477    /// Removes the last character from the string buffer and returns it.
1478    ///
1479    /// Returns [`None`] if this `String` is empty.
1480    ///
1481    /// # Examples
1482    ///
1483    /// ```
1484    /// let mut s = String::from("abč");
1485    ///
1486    /// assert_eq!(s.pop(), Some('č'));
1487    /// assert_eq!(s.pop(), Some('b'));
1488    /// assert_eq!(s.pop(), Some('a'));
1489    ///
1490    /// assert_eq!(s.pop(), None);
1491    /// ```
1492    #[inline]
1493    #[stable(feature = "rust1", since = "1.0.0")]
1494    pub fn pop(&mut self) -> Option<char> {
1495        let ch = self.chars().rev().next()?;
1496        let newlen = self.len() - ch.len_utf8();
1497        unsafe {
1498            self.vec.set_len(newlen);
1499        }
1500        Some(ch)
1501    }
1502
1503    /// Removes a [`char`] from this `String` at a byte position and returns it.
1504    ///
1505    /// This is an *O*(*n*) operation, as it requires copying every element in the
1506    /// buffer.
1507    ///
1508    /// # Panics
1509    ///
1510    /// Panics if `idx` is larger than or equal to the `String`'s length,
1511    /// or if it does not lie on a [`char`] boundary.
1512    ///
1513    /// # Examples
1514    ///
1515    /// ```
1516    /// let mut s = String::from("abç");
1517    ///
1518    /// assert_eq!(s.remove(0), 'a');
1519    /// assert_eq!(s.remove(1), 'ç');
1520    /// assert_eq!(s.remove(0), 'b');
1521    /// ```
1522    #[inline]
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    #[rustc_confusables("delete", "take")]
1525    pub fn remove(&mut self, idx: usize) -> char {
1526        let ch = match self[idx..].chars().next() {
1527            Some(ch) => ch,
1528            None => panic!("cannot remove a char from the end of a string"),
1529        };
1530
1531        let next = idx + ch.len_utf8();
1532        let len = self.len();
1533        unsafe {
1534            ptr::copy(self.vec.as_ptr().add(next), self.vec.as_mut_ptr().add(idx), len - next);
1535            self.vec.set_len(len - (next - idx));
1536        }
1537        ch
1538    }
1539
1540    /// Remove all matches of pattern `pat` in the `String`.
1541    ///
1542    /// # Examples
1543    ///
1544    /// ```
1545    /// #![feature(string_remove_matches)]
1546    /// let mut s = String::from("Trees are not green, the sky is not blue.");
1547    /// s.remove_matches("not ");
1548    /// assert_eq!("Trees are green, the sky is blue.", s);
1549    /// ```
1550    ///
1551    /// Matches will be detected and removed iteratively, so in cases where
1552    /// patterns overlap, only the first pattern will be removed:
1553    ///
1554    /// ```
1555    /// #![feature(string_remove_matches)]
1556    /// let mut s = String::from("banana");
1557    /// s.remove_matches("ana");
1558    /// assert_eq!("bna", s);
1559    /// ```
1560    #[cfg(not(no_global_oom_handling))]
1561    #[unstable(feature = "string_remove_matches", reason = "new API", issue = "72826")]
1562    pub fn remove_matches<P: Pattern>(&mut self, pat: P) {
1563        use core::str::pattern::Searcher;
1564
1565        let rejections = {
1566            let mut searcher = pat.into_searcher(self);
1567            // Per Searcher::next:
1568            //
1569            // A Match result needs to contain the whole matched pattern,
1570            // however Reject results may be split up into arbitrary many
1571            // adjacent fragments. Both ranges may have zero length.
1572            //
1573            // In practice the implementation of Searcher::next_match tends to
1574            // be more efficient, so we use it here and do some work to invert
1575            // matches into rejections since that's what we want to copy below.
1576            let mut front = 0;
1577            let rejections: Vec<_> = from_fn(|| {
1578                let (start, end) = searcher.next_match()?;
1579                let prev_front = front;
1580                front = end;
1581                Some((prev_front, start))
1582            })
1583            .collect();
1584            rejections.into_iter().chain(core::iter::once((front, self.len())))
1585        };
1586
1587        let mut len = 0;
1588        let ptr = self.vec.as_mut_ptr();
1589
1590        for (start, end) in rejections {
1591            let count = end - start;
1592            if start != len {
1593                // SAFETY: per Searcher::next:
1594                //
1595                // The stream of Match and Reject values up to a Done will
1596                // contain index ranges that are adjacent, non-overlapping,
1597                // covering the whole haystack, and laying on utf8
1598                // boundaries.
1599                unsafe {
1600                    ptr::copy(ptr.add(start), ptr.add(len), count);
1601                }
1602            }
1603            len += count;
1604        }
1605
1606        unsafe {
1607            self.vec.set_len(len);
1608        }
1609    }
1610
1611    /// Retains only the characters specified by the predicate.
1612    ///
1613    /// In other words, remove all characters `c` such that `f(c)` returns `false`.
1614    /// This method operates in place, visiting each character exactly once in the
1615    /// original order, and preserves the order of the retained characters.
1616    ///
1617    /// # Examples
1618    ///
1619    /// ```
1620    /// let mut s = String::from("f_o_ob_ar");
1621    ///
1622    /// s.retain(|c| c != '_');
1623    ///
1624    /// assert_eq!(s, "foobar");
1625    /// ```
1626    ///
1627    /// Because the elements are visited exactly once in the original order,
1628    /// external state may be used to decide which elements to keep.
1629    ///
1630    /// ```
1631    /// let mut s = String::from("abcde");
1632    /// let keep = [false, true, true, false, true];
1633    /// let mut iter = keep.iter();
1634    /// s.retain(|_| *iter.next().unwrap());
1635    /// assert_eq!(s, "bce");
1636    /// ```
1637    #[inline]
1638    #[stable(feature = "string_retain", since = "1.26.0")]
1639    pub fn retain<F>(&mut self, mut f: F)
1640    where
1641        F: FnMut(char) -> bool,
1642    {
1643        struct SetLenOnDrop<'a> {
1644            s: &'a mut String,
1645            idx: usize,
1646            del_bytes: usize,
1647        }
1648
1649        impl<'a> Drop for SetLenOnDrop<'a> {
1650            fn drop(&mut self) {
1651                let new_len = self.idx - self.del_bytes;
1652                debug_assert!(new_len <= self.s.len());
1653                unsafe { self.s.vec.set_len(new_len) };
1654            }
1655        }
1656
1657        let len = self.len();
1658        let mut guard = SetLenOnDrop { s: self, idx: 0, del_bytes: 0 };
1659
1660        while guard.idx < len {
1661            let ch =
1662                // SAFETY: `guard.idx` is positive-or-zero and less that len so the `get_unchecked`
1663                // is in bound. `self` is valid UTF-8 like string and the returned slice starts at
1664                // a unicode code point so the `Chars` always return one character.
1665                unsafe { guard.s.get_unchecked(guard.idx..len).chars().next().unwrap_unchecked() };
1666            let ch_len = ch.len_utf8();
1667
1668            if !f(ch) {
1669                guard.del_bytes += ch_len;
1670            } else if guard.del_bytes > 0 {
1671                // SAFETY: `guard.idx` is in bound and `guard.del_bytes` represent the number of
1672                // bytes that are erased from the string so the resulting `guard.idx -
1673                // guard.del_bytes` always represent a valid unicode code point.
1674                //
1675                // `guard.del_bytes` >= `ch.len_utf8()`, so taking a slice with `ch.len_utf8()` len
1676                // is safe.
1677                ch.encode_utf8(unsafe {
1678                    crate::slice::from_raw_parts_mut(
1679                        guard.s.as_mut_ptr().add(guard.idx - guard.del_bytes),
1680                        ch.len_utf8(),
1681                    )
1682                });
1683            }
1684
1685            // Point idx to the next char
1686            guard.idx += ch_len;
1687        }
1688
1689        drop(guard);
1690    }
1691
1692    /// Inserts a character into this `String` at a byte position.
1693    ///
1694    /// This is an *O*(*n*) operation as it requires copying every element in the
1695    /// buffer.
1696    ///
1697    /// # Panics
1698    ///
1699    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1700    /// lie on a [`char`] boundary.
1701    ///
1702    /// # Examples
1703    ///
1704    /// ```
1705    /// let mut s = String::with_capacity(3);
1706    ///
1707    /// s.insert(0, 'f');
1708    /// s.insert(1, 'o');
1709    /// s.insert(2, 'o');
1710    ///
1711    /// assert_eq!("foo", s);
1712    /// ```
1713    #[cfg(not(no_global_oom_handling))]
1714    #[inline]
1715    #[stable(feature = "rust1", since = "1.0.0")]
1716    #[rustc_confusables("set")]
1717    pub fn insert(&mut self, idx: usize, ch: char) {
1718        assert!(self.is_char_boundary(idx));
1719        let mut bits = [0; 4];
1720        let bits = ch.encode_utf8(&mut bits).as_bytes();
1721
1722        unsafe {
1723            self.insert_bytes(idx, bits);
1724        }
1725    }
1726
1727    #[cfg(not(no_global_oom_handling))]
1728    unsafe fn insert_bytes(&mut self, idx: usize, bytes: &[u8]) {
1729        let len = self.len();
1730        let amt = bytes.len();
1731        self.vec.reserve(amt);
1732
1733        unsafe {
1734            ptr::copy(self.vec.as_ptr().add(idx), self.vec.as_mut_ptr().add(idx + amt), len - idx);
1735            ptr::copy_nonoverlapping(bytes.as_ptr(), self.vec.as_mut_ptr().add(idx), amt);
1736            self.vec.set_len(len + amt);
1737        }
1738    }
1739
1740    /// Inserts a string slice into this `String` at a byte position.
1741    ///
1742    /// This is an *O*(*n*) operation as it requires copying every element in the
1743    /// buffer.
1744    ///
1745    /// # Panics
1746    ///
1747    /// Panics if `idx` is larger than the `String`'s length, or if it does not
1748    /// lie on a [`char`] boundary.
1749    ///
1750    /// # Examples
1751    ///
1752    /// ```
1753    /// let mut s = String::from("bar");
1754    ///
1755    /// s.insert_str(0, "foo");
1756    ///
1757    /// assert_eq!("foobar", s);
1758    /// ```
1759    #[cfg(not(no_global_oom_handling))]
1760    #[inline]
1761    #[stable(feature = "insert_str", since = "1.16.0")]
1762    #[cfg_attr(not(test), rustc_diagnostic_item = "string_insert_str")]
1763    pub fn insert_str(&mut self, idx: usize, string: &str) {
1764        assert!(self.is_char_boundary(idx));
1765
1766        unsafe {
1767            self.insert_bytes(idx, string.as_bytes());
1768        }
1769    }
1770
1771    /// Returns a mutable reference to the contents of this `String`.
1772    ///
1773    /// # Safety
1774    ///
1775    /// This function is unsafe because the returned `&mut Vec` allows writing
1776    /// bytes which are not valid UTF-8. If this constraint is violated, using
1777    /// the original `String` after dropping the `&mut Vec` may violate memory
1778    /// safety, as the rest of the standard library assumes that `String`s are
1779    /// valid UTF-8.
1780    ///
1781    /// # Examples
1782    ///
1783    /// ```
1784    /// let mut s = String::from("hello");
1785    ///
1786    /// unsafe {
1787    ///     let vec = s.as_mut_vec();
1788    ///     assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);
1789    ///
1790    ///     vec.reverse();
1791    /// }
1792    /// assert_eq!(s, "olleh");
1793    /// ```
1794    #[inline]
1795    #[stable(feature = "rust1", since = "1.0.0")]
1796    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1797    pub const unsafe fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1798        &mut self.vec
1799    }
1800
1801    /// Returns the length of this `String`, in bytes, not [`char`]s or
1802    /// graphemes. In other words, it might not be what a human considers the
1803    /// length of the string.
1804    ///
1805    /// # Examples
1806    ///
1807    /// ```
1808    /// let a = String::from("foo");
1809    /// assert_eq!(a.len(), 3);
1810    ///
1811    /// let fancy_f = String::from("ƒoo");
1812    /// assert_eq!(fancy_f.len(), 4);
1813    /// assert_eq!(fancy_f.chars().count(), 3);
1814    /// ```
1815    #[inline]
1816    #[must_use]
1817    #[stable(feature = "rust1", since = "1.0.0")]
1818    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1819    #[rustc_confusables("length", "size")]
1820    pub const fn len(&self) -> usize {
1821        self.vec.len()
1822    }
1823
1824    /// Returns `true` if this `String` has a length of zero, and `false` otherwise.
1825    ///
1826    /// # Examples
1827    ///
1828    /// ```
1829    /// let mut v = String::new();
1830    /// assert!(v.is_empty());
1831    ///
1832    /// v.push('a');
1833    /// assert!(!v.is_empty());
1834    /// ```
1835    #[inline]
1836    #[must_use]
1837    #[stable(feature = "rust1", since = "1.0.0")]
1838    #[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
1839    pub const fn is_empty(&self) -> bool {
1840        self.len() == 0
1841    }
1842
1843    /// Splits the string into two at the given byte index.
1844    ///
1845    /// Returns a newly allocated `String`. `self` contains bytes `[0, at)`, and
1846    /// the returned `String` contains bytes `[at, len)`. `at` must be on the
1847    /// boundary of a UTF-8 code point.
1848    ///
1849    /// Note that the capacity of `self` does not change.
1850    ///
1851    /// # Panics
1852    ///
1853    /// Panics if `at` is not on a `UTF-8` code point boundary, or if it is beyond the last
1854    /// code point of the string.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```
1859    /// # fn main() {
1860    /// let mut hello = String::from("Hello, World!");
1861    /// let world = hello.split_off(7);
1862    /// assert_eq!(hello, "Hello, ");
1863    /// assert_eq!(world, "World!");
1864    /// # }
1865    /// ```
1866    #[cfg(not(no_global_oom_handling))]
1867    #[inline]
1868    #[stable(feature = "string_split_off", since = "1.16.0")]
1869    #[must_use = "use `.truncate()` if you don't need the other half"]
1870    pub fn split_off(&mut self, at: usize) -> String {
1871        assert!(self.is_char_boundary(at));
1872        let other = self.vec.split_off(at);
1873        unsafe { String::from_utf8_unchecked(other) }
1874    }
1875
1876    /// Truncates this `String`, removing all contents.
1877    ///
1878    /// While this means the `String` will have a length of zero, it does not
1879    /// touch its capacity.
1880    ///
1881    /// # Examples
1882    ///
1883    /// ```
1884    /// let mut s = String::from("foo");
1885    ///
1886    /// s.clear();
1887    ///
1888    /// assert!(s.is_empty());
1889    /// assert_eq!(0, s.len());
1890    /// assert_eq!(3, s.capacity());
1891    /// ```
1892    #[inline]
1893    #[stable(feature = "rust1", since = "1.0.0")]
1894    pub fn clear(&mut self) {
1895        self.vec.clear()
1896    }
1897
1898    /// Removes the specified range from the string in bulk, returning all
1899    /// removed characters as an iterator.
1900    ///
1901    /// The returned iterator keeps a mutable borrow on the string to optimize
1902    /// its implementation.
1903    ///
1904    /// # Panics
1905    ///
1906    /// Panics if the starting point or end point do not lie on a [`char`]
1907    /// boundary, or if they're out of bounds.
1908    ///
1909    /// # Leaking
1910    ///
1911    /// If the returned iterator goes out of scope without being dropped (due to
1912    /// [`core::mem::forget`], for example), the string may still contain a copy
1913    /// of any drained characters, or may have lost characters arbitrarily,
1914    /// including characters outside the range.
1915    ///
1916    /// # Examples
1917    ///
1918    /// ```
1919    /// let mut s = String::from("α is alpha, β is beta");
1920    /// let beta_offset = s.find('β').unwrap_or(s.len());
1921    ///
1922    /// // Remove the range up until the β from the string
1923    /// let t: String = s.drain(..beta_offset).collect();
1924    /// assert_eq!(t, "α is alpha, ");
1925    /// assert_eq!(s, "β is beta");
1926    ///
1927    /// // A full range clears the string, like `clear()` does
1928    /// s.drain(..);
1929    /// assert_eq!(s, "");
1930    /// ```
1931    #[stable(feature = "drain", since = "1.6.0")]
1932    pub fn drain<R>(&mut self, range: R) -> Drain<'_>
1933    where
1934        R: RangeBounds<usize>,
1935    {
1936        // Memory safety
1937        //
1938        // The String version of Drain does not have the memory safety issues
1939        // of the vector version. The data is just plain bytes.
1940        // Because the range removal happens in Drop, if the Drain iterator is leaked,
1941        // the removal will not happen.
1942        let Range { start, end } = slice::range(range, ..self.len());
1943        assert!(self.is_char_boundary(start));
1944        assert!(self.is_char_boundary(end));
1945
1946        // Take out two simultaneous borrows. The &mut String won't be accessed
1947        // until iteration is over, in Drop.
1948        let self_ptr = self as *mut _;
1949        // SAFETY: `slice::range` and `is_char_boundary` do the appropriate bounds checks.
1950        let chars_iter = unsafe { self.get_unchecked(start..end) }.chars();
1951
1952        Drain { start, end, iter: chars_iter, string: self_ptr }
1953    }
1954
1955    /// Converts a `String` into an iterator over the [`char`]s of the string.
1956    ///
1957    /// As a string consists of valid UTF-8, we can iterate through a string
1958    /// by [`char`]. This method returns such an iterator.
1959    ///
1960    /// It's important to remember that [`char`] represents a Unicode Scalar
1961    /// Value, and might not match your idea of what a 'character' is. Iteration
1962    /// over grapheme clusters may be what you actually want. That functionality
1963    /// is not provided by Rust's standard library, check crates.io instead.
1964    ///
1965    /// # Examples
1966    ///
1967    /// Basic usage:
1968    ///
1969    /// ```
1970    /// #![feature(string_into_chars)]
1971    ///
1972    /// let word = String::from("goodbye");
1973    ///
1974    /// let mut chars = word.into_chars();
1975    ///
1976    /// assert_eq!(Some('g'), chars.next());
1977    /// assert_eq!(Some('o'), chars.next());
1978    /// assert_eq!(Some('o'), chars.next());
1979    /// assert_eq!(Some('d'), chars.next());
1980    /// assert_eq!(Some('b'), chars.next());
1981    /// assert_eq!(Some('y'), chars.next());
1982    /// assert_eq!(Some('e'), chars.next());
1983    ///
1984    /// assert_eq!(None, chars.next());
1985    /// ```
1986    ///
1987    /// Remember, [`char`]s might not match your intuition about characters:
1988    ///
1989    /// ```
1990    /// #![feature(string_into_chars)]
1991    ///
1992    /// let y = String::from("y̆");
1993    ///
1994    /// let mut chars = y.into_chars();
1995    ///
1996    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1997    /// assert_eq!(Some('\u{0306}'), chars.next());
1998    ///
1999    /// assert_eq!(None, chars.next());
2000    /// ```
2001    ///
2002    /// [`char`]: prim@char
2003    #[inline]
2004    #[must_use = "`self` will be dropped if the result is not used"]
2005    #[unstable(feature = "string_into_chars", issue = "133125")]
2006    pub fn into_chars(self) -> IntoChars {
2007        IntoChars { bytes: self.into_bytes().into_iter() }
2008    }
2009
2010    /// Removes the specified range in the string,
2011    /// and replaces it with the given string.
2012    /// The given string doesn't need to be the same length as the range.
2013    ///
2014    /// # Panics
2015    ///
2016    /// Panics if the starting point or end point do not lie on a [`char`]
2017    /// boundary, or if they're out of bounds.
2018    ///
2019    /// # Examples
2020    ///
2021    /// ```
2022    /// let mut s = String::from("α is alpha, β is beta");
2023    /// let beta_offset = s.find('β').unwrap_or(s.len());
2024    ///
2025    /// // Replace the range up until the β from the string
2026    /// s.replace_range(..beta_offset, "Α is capital alpha; ");
2027    /// assert_eq!(s, "Α is capital alpha; β is beta");
2028    /// ```
2029    #[cfg(not(no_global_oom_handling))]
2030    #[stable(feature = "splice", since = "1.27.0")]
2031    pub fn replace_range<R>(&mut self, range: R, replace_with: &str)
2032    where
2033        R: RangeBounds<usize>,
2034    {
2035        // Memory safety
2036        //
2037        // Replace_range does not have the memory safety issues of a vector Splice.
2038        // of the vector version. The data is just plain bytes.
2039
2040        // WARNING: Inlining this variable would be unsound (#81138)
2041        let start = range.start_bound();
2042        match start {
2043            Included(&n) => assert!(self.is_char_boundary(n)),
2044            Excluded(&n) => assert!(self.is_char_boundary(n + 1)),
2045            Unbounded => {}
2046        };
2047        // WARNING: Inlining this variable would be unsound (#81138)
2048        let end = range.end_bound();
2049        match end {
2050            Included(&n) => assert!(self.is_char_boundary(n + 1)),
2051            Excluded(&n) => assert!(self.is_char_boundary(n)),
2052            Unbounded => {}
2053        };
2054
2055        // Using `range` again would be unsound (#81138)
2056        // We assume the bounds reported by `range` remain the same, but
2057        // an adversarial implementation could change between calls
2058        unsafe { self.as_mut_vec() }.splice((start, end), replace_with.bytes());
2059    }
2060
2061    /// Converts this `String` into a <code>[Box]<[str]></code>.
2062    ///
2063    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
2064    /// Note that this call may reallocate and copy the bytes of the string.
2065    ///
2066    /// [`shrink_to_fit`]: String::shrink_to_fit
2067    /// [str]: prim@str "str"
2068    ///
2069    /// # Examples
2070    ///
2071    /// ```
2072    /// let s = String::from("hello");
2073    ///
2074    /// let b = s.into_boxed_str();
2075    /// ```
2076    #[cfg(not(no_global_oom_handling))]
2077    #[stable(feature = "box_str", since = "1.4.0")]
2078    #[must_use = "`self` will be dropped if the result is not used"]
2079    #[inline]
2080    pub fn into_boxed_str(self) -> Box<str> {
2081        let slice = self.vec.into_boxed_slice();
2082        unsafe { from_boxed_utf8_unchecked(slice) }
2083    }
2084
2085    /// Consumes and leaks the `String`, returning a mutable reference to the contents,
2086    /// `&'a mut str`.
2087    ///
2088    /// The caller has free choice over the returned lifetime, including `'static`. Indeed,
2089    /// this function is ideally used for data that lives for the remainder of the program's life,
2090    /// as dropping the returned reference will cause a memory leak.
2091    ///
2092    /// It does not reallocate or shrink the `String`, so the leaked allocation may include unused
2093    /// capacity that is not part of the returned slice. If you want to discard excess capacity,
2094    /// call [`into_boxed_str`], and then [`Box::leak`] instead. However, keep in mind that
2095    /// trimming the capacity may result in a reallocation and copy.
2096    ///
2097    /// [`into_boxed_str`]: Self::into_boxed_str
2098    ///
2099    /// # Examples
2100    ///
2101    /// ```
2102    /// let x = String::from("bucket");
2103    /// let static_ref: &'static mut str = x.leak();
2104    /// assert_eq!(static_ref, "bucket");
2105    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
2106    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2107    /// # drop(unsafe { Box::from_raw(static_ref) });
2108    /// ```
2109    #[stable(feature = "string_leak", since = "1.72.0")]
2110    #[inline]
2111    pub fn leak<'a>(self) -> &'a mut str {
2112        let slice = self.vec.leak();
2113        unsafe { from_utf8_unchecked_mut(slice) }
2114    }
2115}
2116
2117impl FromUtf8Error {
2118    /// Returns a slice of [`u8`]s bytes that were attempted to convert to a `String`.
2119    ///
2120    /// # Examples
2121    ///
2122    /// ```
2123    /// // some invalid bytes, in a vector
2124    /// let bytes = vec![0, 159];
2125    ///
2126    /// let value = String::from_utf8(bytes);
2127    ///
2128    /// assert_eq!(&[0, 159], value.unwrap_err().as_bytes());
2129    /// ```
2130    #[must_use]
2131    #[stable(feature = "from_utf8_error_as_bytes", since = "1.26.0")]
2132    pub fn as_bytes(&self) -> &[u8] {
2133        &self.bytes[..]
2134    }
2135
2136    /// Converts the bytes into a `String` lossily, substituting invalid UTF-8
2137    /// sequences with replacement characters.
2138    ///
2139    /// See [`String::from_utf8_lossy`] for more details on replacement of
2140    /// invalid sequences, and [`String::from_utf8_lossy_owned`] for the
2141    /// `String` function which corresponds to this function.
2142    ///
2143    /// # Examples
2144    ///
2145    /// ```
2146    /// #![feature(string_from_utf8_lossy_owned)]
2147    /// // some invalid bytes
2148    /// let input: Vec<u8> = b"Hello \xF0\x90\x80World".into();
2149    /// let output = String::from_utf8(input).unwrap_or_else(|e| e.into_utf8_lossy());
2150    ///
2151    /// assert_eq!(String::from("Hello �World"), output);
2152    /// ```
2153    #[must_use]
2154    #[cfg(not(no_global_oom_handling))]
2155    #[unstable(feature = "string_from_utf8_lossy_owned", issue = "129436")]
2156    pub fn into_utf8_lossy(self) -> String {
2157        const REPLACEMENT: &str = "\u{FFFD}";
2158
2159        let mut res = {
2160            let mut v = Vec::with_capacity(self.bytes.len());
2161
2162            // `Utf8Error::valid_up_to` returns the maximum index of validated
2163            // UTF-8 bytes. Copy the valid bytes into the output buffer.
2164            v.extend_from_slice(&self.bytes[..self.error.valid_up_to()]);
2165
2166            // SAFETY: This is safe because the only bytes present in the buffer
2167            // were validated as UTF-8 by the call to `String::from_utf8` which
2168            // produced this `FromUtf8Error`.
2169            unsafe { String::from_utf8_unchecked(v) }
2170        };
2171
2172        let iter = self.bytes[self.error.valid_up_to()..].utf8_chunks();
2173
2174        for chunk in iter {
2175            res.push_str(chunk.valid());
2176            if !chunk.invalid().is_empty() {
2177                res.push_str(REPLACEMENT);
2178            }
2179        }
2180
2181        res
2182    }
2183
2184    /// Returns the bytes that were attempted to convert to a `String`.
2185    ///
2186    /// This method is carefully constructed to avoid allocation. It will
2187    /// consume the error, moving out the bytes, so that a copy of the bytes
2188    /// does not need to be made.
2189    ///
2190    /// # Examples
2191    ///
2192    /// ```
2193    /// // some invalid bytes, in a vector
2194    /// let bytes = vec![0, 159];
2195    ///
2196    /// let value = String::from_utf8(bytes);
2197    ///
2198    /// assert_eq!(vec![0, 159], value.unwrap_err().into_bytes());
2199    /// ```
2200    #[must_use = "`self` will be dropped if the result is not used"]
2201    #[stable(feature = "rust1", since = "1.0.0")]
2202    pub fn into_bytes(self) -> Vec<u8> {
2203        self.bytes
2204    }
2205
2206    /// Fetch a `Utf8Error` to get more details about the conversion failure.
2207    ///
2208    /// The [`Utf8Error`] type provided by [`std::str`] represents an error that may
2209    /// occur when converting a slice of [`u8`]s to a [`&str`]. In this sense, it's
2210    /// an analogue to `FromUtf8Error`. See its documentation for more details
2211    /// on using it.
2212    ///
2213    /// [`std::str`]: core::str "std::str"
2214    /// [`&str`]: prim@str "&str"
2215    ///
2216    /// # Examples
2217    ///
2218    /// ```
2219    /// // some invalid bytes, in a vector
2220    /// let bytes = vec![0, 159];
2221    ///
2222    /// let error = String::from_utf8(bytes).unwrap_err().utf8_error();
2223    ///
2224    /// // the first byte is invalid here
2225    /// assert_eq!(1, error.valid_up_to());
2226    /// ```
2227    #[must_use]
2228    #[stable(feature = "rust1", since = "1.0.0")]
2229    pub fn utf8_error(&self) -> Utf8Error {
2230        self.error
2231    }
2232}
2233
2234#[stable(feature = "rust1", since = "1.0.0")]
2235impl fmt::Display for FromUtf8Error {
2236    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2237        fmt::Display::fmt(&self.error, f)
2238    }
2239}
2240
2241#[stable(feature = "rust1", since = "1.0.0")]
2242impl fmt::Display for FromUtf16Error {
2243    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2244        fmt::Display::fmt("invalid utf-16: lone surrogate found", f)
2245    }
2246}
2247
2248#[stable(feature = "rust1", since = "1.0.0")]
2249impl Error for FromUtf8Error {
2250    #[allow(deprecated)]
2251    fn description(&self) -> &str {
2252        "invalid utf-8"
2253    }
2254}
2255
2256#[stable(feature = "rust1", since = "1.0.0")]
2257impl Error for FromUtf16Error {
2258    #[allow(deprecated)]
2259    fn description(&self) -> &str {
2260        "invalid utf-16"
2261    }
2262}
2263
2264#[cfg(not(no_global_oom_handling))]
2265#[stable(feature = "rust1", since = "1.0.0")]
2266impl Clone for String {
2267    fn clone(&self) -> Self {
2268        String { vec: self.vec.clone() }
2269    }
2270
2271    /// Clones the contents of `source` into `self`.
2272    ///
2273    /// This method is preferred over simply assigning `source.clone()` to `self`,
2274    /// as it avoids reallocation if possible.
2275    fn clone_from(&mut self, source: &Self) {
2276        self.vec.clone_from(&source.vec);
2277    }
2278}
2279
2280#[cfg(not(no_global_oom_handling))]
2281#[stable(feature = "rust1", since = "1.0.0")]
2282impl FromIterator<char> for String {
2283    fn from_iter<I: IntoIterator<Item = char>>(iter: I) -> String {
2284        let mut buf = String::new();
2285        buf.extend(iter);
2286        buf
2287    }
2288}
2289
2290#[cfg(not(no_global_oom_handling))]
2291#[stable(feature = "string_from_iter_by_ref", since = "1.17.0")]
2292impl<'a> FromIterator<&'a char> for String {
2293    fn from_iter<I: IntoIterator<Item = &'a char>>(iter: I) -> String {
2294        let mut buf = String::new();
2295        buf.extend(iter);
2296        buf
2297    }
2298}
2299
2300#[cfg(not(no_global_oom_handling))]
2301#[stable(feature = "rust1", since = "1.0.0")]
2302impl<'a> FromIterator<&'a str> for String {
2303    fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> String {
2304        let mut buf = String::new();
2305        buf.extend(iter);
2306        buf
2307    }
2308}
2309
2310#[cfg(not(no_global_oom_handling))]
2311#[stable(feature = "extend_string", since = "1.4.0")]
2312impl FromIterator<String> for String {
2313    fn from_iter<I: IntoIterator<Item = String>>(iter: I) -> String {
2314        let mut iterator = iter.into_iter();
2315
2316        // Because we're iterating over `String`s, we can avoid at least
2317        // one allocation by getting the first string from the iterator
2318        // and appending to it all the subsequent strings.
2319        match iterator.next() {
2320            None => String::new(),
2321            Some(mut buf) => {
2322                buf.extend(iterator);
2323                buf
2324            }
2325        }
2326    }
2327}
2328
2329#[cfg(not(no_global_oom_handling))]
2330#[stable(feature = "box_str2", since = "1.45.0")]
2331impl<A: Allocator> FromIterator<Box<str, A>> for String {
2332    fn from_iter<I: IntoIterator<Item = Box<str, A>>>(iter: I) -> String {
2333        let mut buf = String::new();
2334        buf.extend(iter);
2335        buf
2336    }
2337}
2338
2339#[cfg(not(no_global_oom_handling))]
2340#[stable(feature = "herd_cows", since = "1.19.0")]
2341impl<'a> FromIterator<Cow<'a, str>> for String {
2342    fn from_iter<I: IntoIterator<Item = Cow<'a, str>>>(iter: I) -> String {
2343        let mut iterator = iter.into_iter();
2344
2345        // Because we're iterating over CoWs, we can (potentially) avoid at least
2346        // one allocation by getting the first item and appending to it all the
2347        // subsequent items.
2348        match iterator.next() {
2349            None => String::new(),
2350            Some(cow) => {
2351                let mut buf = cow.into_owned();
2352                buf.extend(iterator);
2353                buf
2354            }
2355        }
2356    }
2357}
2358
2359#[cfg(not(no_global_oom_handling))]
2360#[stable(feature = "rust1", since = "1.0.0")]
2361impl Extend<char> for String {
2362    fn extend<I: IntoIterator<Item = char>>(&mut self, iter: I) {
2363        let iterator = iter.into_iter();
2364        let (lower_bound, _) = iterator.size_hint();
2365        self.reserve(lower_bound);
2366        iterator.for_each(move |c| self.push(c));
2367    }
2368
2369    #[inline]
2370    fn extend_one(&mut self, c: char) {
2371        self.push(c);
2372    }
2373
2374    #[inline]
2375    fn extend_reserve(&mut self, additional: usize) {
2376        self.reserve(additional);
2377    }
2378}
2379
2380#[cfg(not(no_global_oom_handling))]
2381#[stable(feature = "extend_ref", since = "1.2.0")]
2382impl<'a> Extend<&'a char> for String {
2383    fn extend<I: IntoIterator<Item = &'a char>>(&mut self, iter: I) {
2384        self.extend(iter.into_iter().cloned());
2385    }
2386
2387    #[inline]
2388    fn extend_one(&mut self, &c: &'a char) {
2389        self.push(c);
2390    }
2391
2392    #[inline]
2393    fn extend_reserve(&mut self, additional: usize) {
2394        self.reserve(additional);
2395    }
2396}
2397
2398#[cfg(not(no_global_oom_handling))]
2399#[stable(feature = "rust1", since = "1.0.0")]
2400impl<'a> Extend<&'a str> for String {
2401    fn extend<I: IntoIterator<Item = &'a str>>(&mut self, iter: I) {
2402        iter.into_iter().for_each(move |s| self.push_str(s));
2403    }
2404
2405    #[inline]
2406    fn extend_one(&mut self, s: &'a str) {
2407        self.push_str(s);
2408    }
2409}
2410
2411#[cfg(not(no_global_oom_handling))]
2412#[stable(feature = "box_str2", since = "1.45.0")]
2413impl<A: Allocator> Extend<Box<str, A>> for String {
2414    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2415        iter.into_iter().for_each(move |s| self.push_str(&s));
2416    }
2417}
2418
2419#[cfg(not(no_global_oom_handling))]
2420#[stable(feature = "extend_string", since = "1.4.0")]
2421impl Extend<String> for String {
2422    fn extend<I: IntoIterator<Item = String>>(&mut self, iter: I) {
2423        iter.into_iter().for_each(move |s| self.push_str(&s));
2424    }
2425
2426    #[inline]
2427    fn extend_one(&mut self, s: String) {
2428        self.push_str(&s);
2429    }
2430}
2431
2432#[cfg(not(no_global_oom_handling))]
2433#[stable(feature = "herd_cows", since = "1.19.0")]
2434impl<'a> Extend<Cow<'a, str>> for String {
2435    fn extend<I: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: I) {
2436        iter.into_iter().for_each(move |s| self.push_str(&s));
2437    }
2438
2439    #[inline]
2440    fn extend_one(&mut self, s: Cow<'a, str>) {
2441        self.push_str(&s);
2442    }
2443}
2444
2445#[cfg(not(no_global_oom_handling))]
2446#[unstable(feature = "ascii_char", issue = "110998")]
2447impl Extend<core::ascii::Char> for String {
2448    fn extend<I: IntoIterator<Item = core::ascii::Char>>(&mut self, iter: I) {
2449        self.vec.extend(iter.into_iter().map(|c| c.to_u8()));
2450    }
2451
2452    #[inline]
2453    fn extend_one(&mut self, c: core::ascii::Char) {
2454        self.vec.push(c.to_u8());
2455    }
2456}
2457
2458#[cfg(not(no_global_oom_handling))]
2459#[unstable(feature = "ascii_char", issue = "110998")]
2460impl<'a> Extend<&'a core::ascii::Char> for String {
2461    fn extend<I: IntoIterator<Item = &'a core::ascii::Char>>(&mut self, iter: I) {
2462        self.extend(iter.into_iter().cloned());
2463    }
2464
2465    #[inline]
2466    fn extend_one(&mut self, c: &'a core::ascii::Char) {
2467        self.vec.push(c.to_u8());
2468    }
2469}
2470
2471/// A convenience impl that delegates to the impl for `&str`.
2472///
2473/// # Examples
2474///
2475/// ```
2476/// assert_eq!(String::from("Hello world").find("world"), Some(6));
2477/// ```
2478#[unstable(
2479    feature = "pattern",
2480    reason = "API not fully fleshed out and ready to be stabilized",
2481    issue = "27721"
2482)]
2483impl<'b> Pattern for &'b String {
2484    type Searcher<'a> = <&'b str as Pattern>::Searcher<'a>;
2485
2486    fn into_searcher(self, haystack: &str) -> <&'b str as Pattern>::Searcher<'_> {
2487        self[..].into_searcher(haystack)
2488    }
2489
2490    #[inline]
2491    fn is_contained_in(self, haystack: &str) -> bool {
2492        self[..].is_contained_in(haystack)
2493    }
2494
2495    #[inline]
2496    fn is_prefix_of(self, haystack: &str) -> bool {
2497        self[..].is_prefix_of(haystack)
2498    }
2499
2500    #[inline]
2501    fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
2502        self[..].strip_prefix_of(haystack)
2503    }
2504
2505    #[inline]
2506    fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
2507    where
2508        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2509    {
2510        self[..].is_suffix_of(haystack)
2511    }
2512
2513    #[inline]
2514    fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
2515    where
2516        Self::Searcher<'a>: core::str::pattern::ReverseSearcher<'a>,
2517    {
2518        self[..].strip_suffix_of(haystack)
2519    }
2520
2521    #[inline]
2522    fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
2523        Some(Utf8Pattern::StringPattern(self.as_bytes()))
2524    }
2525}
2526
2527macro_rules! impl_eq {
2528    ($lhs:ty, $rhs: ty) => {
2529        #[stable(feature = "rust1", since = "1.0.0")]
2530        #[allow(unused_lifetimes)]
2531        impl<'a, 'b> PartialEq<$rhs> for $lhs {
2532            #[inline]
2533            fn eq(&self, other: &$rhs) -> bool {
2534                PartialEq::eq(&self[..], &other[..])
2535            }
2536            #[inline]
2537            fn ne(&self, other: &$rhs) -> bool {
2538                PartialEq::ne(&self[..], &other[..])
2539            }
2540        }
2541
2542        #[stable(feature = "rust1", since = "1.0.0")]
2543        #[allow(unused_lifetimes)]
2544        impl<'a, 'b> PartialEq<$lhs> for $rhs {
2545            #[inline]
2546            fn eq(&self, other: &$lhs) -> bool {
2547                PartialEq::eq(&self[..], &other[..])
2548            }
2549            #[inline]
2550            fn ne(&self, other: &$lhs) -> bool {
2551                PartialEq::ne(&self[..], &other[..])
2552            }
2553        }
2554    };
2555}
2556
2557impl_eq! { String, str }
2558impl_eq! { String, &'a str }
2559#[cfg(not(no_global_oom_handling))]
2560impl_eq! { Cow<'a, str>, str }
2561#[cfg(not(no_global_oom_handling))]
2562impl_eq! { Cow<'a, str>, &'b str }
2563#[cfg(not(no_global_oom_handling))]
2564impl_eq! { Cow<'a, str>, String }
2565
2566#[stable(feature = "rust1", since = "1.0.0")]
2567impl Default for String {
2568    /// Creates an empty `String`.
2569    #[inline]
2570    fn default() -> String {
2571        String::new()
2572    }
2573}
2574
2575#[stable(feature = "rust1", since = "1.0.0")]
2576impl fmt::Display for String {
2577    #[inline]
2578    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2579        fmt::Display::fmt(&**self, f)
2580    }
2581}
2582
2583#[stable(feature = "rust1", since = "1.0.0")]
2584impl fmt::Debug for String {
2585    #[inline]
2586    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2587        fmt::Debug::fmt(&**self, f)
2588    }
2589}
2590
2591#[stable(feature = "rust1", since = "1.0.0")]
2592impl hash::Hash for String {
2593    #[inline]
2594    fn hash<H: hash::Hasher>(&self, hasher: &mut H) {
2595        (**self).hash(hasher)
2596    }
2597}
2598
2599/// Implements the `+` operator for concatenating two strings.
2600///
2601/// This consumes the `String` on the left-hand side and re-uses its buffer (growing it if
2602/// necessary). This is done to avoid allocating a new `String` and copying the entire contents on
2603/// every operation, which would lead to *O*(*n*^2) running time when building an *n*-byte string by
2604/// repeated concatenation.
2605///
2606/// The string on the right-hand side is only borrowed; its contents are copied into the returned
2607/// `String`.
2608///
2609/// # Examples
2610///
2611/// Concatenating two `String`s takes the first by value and borrows the second:
2612///
2613/// ```
2614/// let a = String::from("hello");
2615/// let b = String::from(" world");
2616/// let c = a + &b;
2617/// // `a` is moved and can no longer be used here.
2618/// ```
2619///
2620/// If you want to keep using the first `String`, you can clone it and append to the clone instead:
2621///
2622/// ```
2623/// let a = String::from("hello");
2624/// let b = String::from(" world");
2625/// let c = a.clone() + &b;
2626/// // `a` is still valid here.
2627/// ```
2628///
2629/// Concatenating `&str` slices can be done by converting the first to a `String`:
2630///
2631/// ```
2632/// let a = "hello";
2633/// let b = " world";
2634/// let c = a.to_string() + b;
2635/// ```
2636#[cfg(not(no_global_oom_handling))]
2637#[stable(feature = "rust1", since = "1.0.0")]
2638impl Add<&str> for String {
2639    type Output = String;
2640
2641    #[inline]
2642    fn add(mut self, other: &str) -> String {
2643        self.push_str(other);
2644        self
2645    }
2646}
2647
2648/// Implements the `+=` operator for appending to a `String`.
2649///
2650/// This has the same behavior as the [`push_str`][String::push_str] method.
2651#[cfg(not(no_global_oom_handling))]
2652#[stable(feature = "stringaddassign", since = "1.12.0")]
2653impl AddAssign<&str> for String {
2654    #[inline]
2655    fn add_assign(&mut self, other: &str) {
2656        self.push_str(other);
2657    }
2658}
2659
2660#[stable(feature = "rust1", since = "1.0.0")]
2661impl<I> ops::Index<I> for String
2662where
2663    I: slice::SliceIndex<str>,
2664{
2665    type Output = I::Output;
2666
2667    #[inline]
2668    fn index(&self, index: I) -> &I::Output {
2669        index.index(self.as_str())
2670    }
2671}
2672
2673#[stable(feature = "rust1", since = "1.0.0")]
2674impl<I> ops::IndexMut<I> for String
2675where
2676    I: slice::SliceIndex<str>,
2677{
2678    #[inline]
2679    fn index_mut(&mut self, index: I) -> &mut I::Output {
2680        index.index_mut(self.as_mut_str())
2681    }
2682}
2683
2684#[stable(feature = "rust1", since = "1.0.0")]
2685impl ops::Deref for String {
2686    type Target = str;
2687
2688    #[inline]
2689    fn deref(&self) -> &str {
2690        self.as_str()
2691    }
2692}
2693
2694#[unstable(feature = "deref_pure_trait", issue = "87121")]
2695unsafe impl ops::DerefPure for String {}
2696
2697#[stable(feature = "derefmut_for_string", since = "1.3.0")]
2698impl ops::DerefMut for String {
2699    #[inline]
2700    fn deref_mut(&mut self) -> &mut str {
2701        self.as_mut_str()
2702    }
2703}
2704
2705/// A type alias for [`Infallible`].
2706///
2707/// This alias exists for backwards compatibility, and may be eventually deprecated.
2708///
2709/// [`Infallible`]: core::convert::Infallible "convert::Infallible"
2710#[stable(feature = "str_parse_error", since = "1.5.0")]
2711pub type ParseError = core::convert::Infallible;
2712
2713#[cfg(not(no_global_oom_handling))]
2714#[stable(feature = "rust1", since = "1.0.0")]
2715impl FromStr for String {
2716    type Err = core::convert::Infallible;
2717    #[inline]
2718    fn from_str(s: &str) -> Result<String, Self::Err> {
2719        Ok(String::from(s))
2720    }
2721}
2722
2723/// A trait for converting a value to a `String`.
2724///
2725/// This trait is automatically implemented for any type which implements the
2726/// [`Display`] trait. As such, `ToString` shouldn't be implemented directly:
2727/// [`Display`] should be implemented instead, and you get the `ToString`
2728/// implementation for free.
2729///
2730/// [`Display`]: fmt::Display
2731#[cfg_attr(not(test), rustc_diagnostic_item = "ToString")]
2732#[stable(feature = "rust1", since = "1.0.0")]
2733pub trait ToString {
2734    /// Converts the given value to a `String`.
2735    ///
2736    /// # Examples
2737    ///
2738    /// ```
2739    /// let i = 5;
2740    /// let five = String::from("5");
2741    ///
2742    /// assert_eq!(five, i.to_string());
2743    /// ```
2744    #[rustc_conversion_suggestion]
2745    #[stable(feature = "rust1", since = "1.0.0")]
2746    #[cfg_attr(not(test), rustc_diagnostic_item = "to_string_method")]
2747    fn to_string(&self) -> String;
2748}
2749
2750/// # Panics
2751///
2752/// In this implementation, the `to_string` method panics
2753/// if the `Display` implementation returns an error.
2754/// This indicates an incorrect `Display` implementation
2755/// since `fmt::Write for String` never returns an error itself.
2756#[cfg(not(no_global_oom_handling))]
2757#[stable(feature = "rust1", since = "1.0.0")]
2758impl<T: fmt::Display + ?Sized> ToString for T {
2759    #[inline]
2760    fn to_string(&self) -> String {
2761        <Self as SpecToString>::spec_to_string(self)
2762    }
2763}
2764
2765#[cfg(not(no_global_oom_handling))]
2766trait SpecToString {
2767    fn spec_to_string(&self) -> String;
2768}
2769
2770#[cfg(not(no_global_oom_handling))]
2771impl<T: fmt::Display + ?Sized> SpecToString for T {
2772    // A common guideline is to not inline generic functions. However,
2773    // removing `#[inline]` from this method causes non-negligible regressions.
2774    // See <https://github.com/rust-lang/rust/pull/74852>, the last attempt
2775    // to try to remove it.
2776    #[inline]
2777    default fn spec_to_string(&self) -> String {
2778        let mut buf = String::new();
2779        let mut formatter =
2780            core::fmt::Formatter::new(&mut buf, core::fmt::FormattingOptions::new());
2781        // Bypass format_args!() to avoid write_str with zero-length strs
2782        fmt::Display::fmt(self, &mut formatter)
2783            .expect("a Display implementation returned an error unexpectedly");
2784        buf
2785    }
2786}
2787
2788#[cfg(not(no_global_oom_handling))]
2789impl SpecToString for core::ascii::Char {
2790    #[inline]
2791    fn spec_to_string(&self) -> String {
2792        self.as_str().to_owned()
2793    }
2794}
2795
2796#[cfg(not(no_global_oom_handling))]
2797impl SpecToString for char {
2798    #[inline]
2799    fn spec_to_string(&self) -> String {
2800        String::from(self.encode_utf8(&mut [0; 4]))
2801    }
2802}
2803
2804#[cfg(not(no_global_oom_handling))]
2805impl SpecToString for bool {
2806    #[inline]
2807    fn spec_to_string(&self) -> String {
2808        String::from(if *self { "true" } else { "false" })
2809    }
2810}
2811
2812#[cfg(not(no_global_oom_handling))]
2813impl SpecToString for u8 {
2814    #[inline]
2815    fn spec_to_string(&self) -> String {
2816        let mut buf = String::with_capacity(3);
2817        let mut n = *self;
2818        if n >= 10 {
2819            if n >= 100 {
2820                buf.push((b'0' + n / 100) as char);
2821                n %= 100;
2822            }
2823            buf.push((b'0' + n / 10) as char);
2824            n %= 10;
2825        }
2826        buf.push((b'0' + n) as char);
2827        buf
2828    }
2829}
2830
2831#[cfg(not(no_global_oom_handling))]
2832impl SpecToString for i8 {
2833    #[inline]
2834    fn spec_to_string(&self) -> String {
2835        let mut buf = String::with_capacity(4);
2836        if self.is_negative() {
2837            buf.push('-');
2838        }
2839        let mut n = self.unsigned_abs();
2840        if n >= 10 {
2841            if n >= 100 {
2842                buf.push('1');
2843                n -= 100;
2844            }
2845            buf.push((b'0' + n / 10) as char);
2846            n %= 10;
2847        }
2848        buf.push((b'0' + n) as char);
2849        buf
2850    }
2851}
2852
2853// Generic/generated code can sometimes have multiple, nested references
2854// for strings, including `&&&str`s that would never be written
2855// by hand. This macro generates twelve layers of nested `&`-impl
2856// for primitive strings.
2857#[cfg(not(no_global_oom_handling))]
2858macro_rules! to_string_str_wrap_in_ref {
2859    {x $($x:ident)*} => {
2860        &to_string_str_wrap_in_ref! { $($x)* }
2861    };
2862    {} => { str };
2863}
2864#[cfg(not(no_global_oom_handling))]
2865macro_rules! to_string_expr_wrap_in_deref {
2866    {$self:expr ; x $($x:ident)*} => {
2867        *(to_string_expr_wrap_in_deref! { $self ; $($x)* })
2868    };
2869    {$self:expr ;} => { $self };
2870}
2871#[cfg(not(no_global_oom_handling))]
2872macro_rules! to_string_str {
2873    {$($($x:ident)*),+} => {
2874        $(
2875            impl SpecToString for to_string_str_wrap_in_ref!($($x)*) {
2876                #[inline]
2877                fn spec_to_string(&self) -> String {
2878                    String::from(to_string_expr_wrap_in_deref!(self ; $($x)*))
2879                }
2880            }
2881        )+
2882    };
2883}
2884
2885#[cfg(not(no_global_oom_handling))]
2886to_string_str! {
2887    x x x x x x x x x x x x,
2888    x x x x x x x x x x x,
2889    x x x x x x x x x x,
2890    x x x x x x x x x,
2891    x x x x x x x x,
2892    x x x x x x x,
2893    x x x x x x,
2894    x x x x x,
2895    x x x x,
2896    x x x,
2897    x x,
2898    x,
2899}
2900
2901#[cfg(not(no_global_oom_handling))]
2902impl SpecToString for Cow<'_, str> {
2903    #[inline]
2904    fn spec_to_string(&self) -> String {
2905        self[..].to_owned()
2906    }
2907}
2908
2909#[cfg(not(no_global_oom_handling))]
2910impl SpecToString for String {
2911    #[inline]
2912    fn spec_to_string(&self) -> String {
2913        self.to_owned()
2914    }
2915}
2916
2917#[cfg(not(no_global_oom_handling))]
2918impl SpecToString for fmt::Arguments<'_> {
2919    #[inline]
2920    fn spec_to_string(&self) -> String {
2921        crate::fmt::format(*self)
2922    }
2923}
2924
2925#[stable(feature = "rust1", since = "1.0.0")]
2926impl AsRef<str> for String {
2927    #[inline]
2928    fn as_ref(&self) -> &str {
2929        self
2930    }
2931}
2932
2933#[stable(feature = "string_as_mut", since = "1.43.0")]
2934impl AsMut<str> for String {
2935    #[inline]
2936    fn as_mut(&mut self) -> &mut str {
2937        self
2938    }
2939}
2940
2941#[stable(feature = "rust1", since = "1.0.0")]
2942impl AsRef<[u8]> for String {
2943    #[inline]
2944    fn as_ref(&self) -> &[u8] {
2945        self.as_bytes()
2946    }
2947}
2948
2949#[cfg(not(no_global_oom_handling))]
2950#[stable(feature = "rust1", since = "1.0.0")]
2951impl From<&str> for String {
2952    /// Converts a `&str` into a [`String`].
2953    ///
2954    /// The result is allocated on the heap.
2955    #[inline]
2956    fn from(s: &str) -> String {
2957        s.to_owned()
2958    }
2959}
2960
2961#[cfg(not(no_global_oom_handling))]
2962#[stable(feature = "from_mut_str_for_string", since = "1.44.0")]
2963impl From<&mut str> for String {
2964    /// Converts a `&mut str` into a [`String`].
2965    ///
2966    /// The result is allocated on the heap.
2967    #[inline]
2968    fn from(s: &mut str) -> String {
2969        s.to_owned()
2970    }
2971}
2972
2973#[cfg(not(no_global_oom_handling))]
2974#[stable(feature = "from_ref_string", since = "1.35.0")]
2975impl From<&String> for String {
2976    /// Converts a `&String` into a [`String`].
2977    ///
2978    /// This clones `s` and returns the clone.
2979    #[inline]
2980    fn from(s: &String) -> String {
2981        s.clone()
2982    }
2983}
2984
2985// note: test pulls in std, which causes errors here
2986#[cfg(not(test))]
2987#[stable(feature = "string_from_box", since = "1.18.0")]
2988impl From<Box<str>> for String {
2989    /// Converts the given boxed `str` slice to a [`String`].
2990    /// It is notable that the `str` slice is owned.
2991    ///
2992    /// # Examples
2993    ///
2994    /// ```
2995    /// let s1: String = String::from("hello world");
2996    /// let s2: Box<str> = s1.into_boxed_str();
2997    /// let s3: String = String::from(s2);
2998    ///
2999    /// assert_eq!("hello world", s3)
3000    /// ```
3001    fn from(s: Box<str>) -> String {
3002        s.into_string()
3003    }
3004}
3005
3006#[cfg(not(no_global_oom_handling))]
3007#[stable(feature = "box_from_str", since = "1.20.0")]
3008impl From<String> for Box<str> {
3009    /// Converts the given [`String`] to a boxed `str` slice that is owned.
3010    ///
3011    /// # Examples
3012    ///
3013    /// ```
3014    /// let s1: String = String::from("hello world");
3015    /// let s2: Box<str> = Box::from(s1);
3016    /// let s3: String = String::from(s2);
3017    ///
3018    /// assert_eq!("hello world", s3)
3019    /// ```
3020    fn from(s: String) -> Box<str> {
3021        s.into_boxed_str()
3022    }
3023}
3024
3025#[cfg(not(no_global_oom_handling))]
3026#[stable(feature = "string_from_cow_str", since = "1.14.0")]
3027impl<'a> From<Cow<'a, str>> for String {
3028    /// Converts a clone-on-write string to an owned
3029    /// instance of [`String`].
3030    ///
3031    /// This extracts the owned string,
3032    /// clones the string if it is not already owned.
3033    ///
3034    /// # Example
3035    ///
3036    /// ```
3037    /// # use std::borrow::Cow;
3038    /// // If the string is not owned...
3039    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3040    /// // It will allocate on the heap and copy the string.
3041    /// let owned: String = String::from(cow);
3042    /// assert_eq!(&owned[..], "eggplant");
3043    /// ```
3044    fn from(s: Cow<'a, str>) -> String {
3045        s.into_owned()
3046    }
3047}
3048
3049#[cfg(not(no_global_oom_handling))]
3050#[stable(feature = "rust1", since = "1.0.0")]
3051impl<'a> From<&'a str> for Cow<'a, str> {
3052    /// Converts a string slice into a [`Borrowed`] variant.
3053    /// No heap allocation is performed, and the string
3054    /// is not copied.
3055    ///
3056    /// # Example
3057    ///
3058    /// ```
3059    /// # use std::borrow::Cow;
3060    /// assert_eq!(Cow::from("eggplant"), Cow::Borrowed("eggplant"));
3061    /// ```
3062    ///
3063    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3064    #[inline]
3065    fn from(s: &'a str) -> Cow<'a, str> {
3066        Cow::Borrowed(s)
3067    }
3068}
3069
3070#[cfg(not(no_global_oom_handling))]
3071#[stable(feature = "rust1", since = "1.0.0")]
3072impl<'a> From<String> for Cow<'a, str> {
3073    /// Converts a [`String`] into an [`Owned`] variant.
3074    /// No heap allocation is performed, and the string
3075    /// is not copied.
3076    ///
3077    /// # Example
3078    ///
3079    /// ```
3080    /// # use std::borrow::Cow;
3081    /// let s = "eggplant".to_string();
3082    /// let s2 = "eggplant".to_string();
3083    /// assert_eq!(Cow::from(s), Cow::<'static, str>::Owned(s2));
3084    /// ```
3085    ///
3086    /// [`Owned`]: crate::borrow::Cow::Owned "borrow::Cow::Owned"
3087    #[inline]
3088    fn from(s: String) -> Cow<'a, str> {
3089        Cow::Owned(s)
3090    }
3091}
3092
3093#[cfg(not(no_global_oom_handling))]
3094#[stable(feature = "cow_from_string_ref", since = "1.28.0")]
3095impl<'a> From<&'a String> for Cow<'a, str> {
3096    /// Converts a [`String`] reference into a [`Borrowed`] variant.
3097    /// No heap allocation is performed, and the string
3098    /// is not copied.
3099    ///
3100    /// # Example
3101    ///
3102    /// ```
3103    /// # use std::borrow::Cow;
3104    /// let s = "eggplant".to_string();
3105    /// assert_eq!(Cow::from(&s), Cow::Borrowed("eggplant"));
3106    /// ```
3107    ///
3108    /// [`Borrowed`]: crate::borrow::Cow::Borrowed "borrow::Cow::Borrowed"
3109    #[inline]
3110    fn from(s: &'a String) -> Cow<'a, str> {
3111        Cow::Borrowed(s.as_str())
3112    }
3113}
3114
3115#[cfg(not(no_global_oom_handling))]
3116#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3117impl<'a> FromIterator<char> for Cow<'a, str> {
3118    fn from_iter<I: IntoIterator<Item = char>>(it: I) -> Cow<'a, str> {
3119        Cow::Owned(FromIterator::from_iter(it))
3120    }
3121}
3122
3123#[cfg(not(no_global_oom_handling))]
3124#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3125impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str> {
3126    fn from_iter<I: IntoIterator<Item = &'b str>>(it: I) -> Cow<'a, str> {
3127        Cow::Owned(FromIterator::from_iter(it))
3128    }
3129}
3130
3131#[cfg(not(no_global_oom_handling))]
3132#[stable(feature = "cow_str_from_iter", since = "1.12.0")]
3133impl<'a> FromIterator<String> for Cow<'a, str> {
3134    fn from_iter<I: IntoIterator<Item = String>>(it: I) -> Cow<'a, str> {
3135        Cow::Owned(FromIterator::from_iter(it))
3136    }
3137}
3138
3139#[stable(feature = "from_string_for_vec_u8", since = "1.14.0")]
3140impl From<String> for Vec<u8> {
3141    /// Converts the given [`String`] to a vector [`Vec`] that holds values of type [`u8`].
3142    ///
3143    /// # Examples
3144    ///
3145    /// ```
3146    /// let s1 = String::from("hello world");
3147    /// let v1 = Vec::from(s1);
3148    ///
3149    /// for b in v1 {
3150    ///     println!("{b}");
3151    /// }
3152    /// ```
3153    fn from(string: String) -> Vec<u8> {
3154        string.into_bytes()
3155    }
3156}
3157
3158#[cfg(not(no_global_oom_handling))]
3159#[stable(feature = "rust1", since = "1.0.0")]
3160impl fmt::Write for String {
3161    #[inline]
3162    fn write_str(&mut self, s: &str) -> fmt::Result {
3163        self.push_str(s);
3164        Ok(())
3165    }
3166
3167    #[inline]
3168    fn write_char(&mut self, c: char) -> fmt::Result {
3169        self.push(c);
3170        Ok(())
3171    }
3172}
3173
3174/// An iterator over the [`char`]s of a string.
3175///
3176/// This struct is created by the [`into_chars`] method on [`String`].
3177/// See its documentation for more.
3178///
3179/// [`char`]: prim@char
3180/// [`into_chars`]: String::into_chars
3181#[cfg_attr(not(no_global_oom_handling), derive(Clone))]
3182#[must_use = "iterators are lazy and do nothing unless consumed"]
3183#[unstable(feature = "string_into_chars", issue = "133125")]
3184pub struct IntoChars {
3185    bytes: vec::IntoIter<u8>,
3186}
3187
3188#[unstable(feature = "string_into_chars", issue = "133125")]
3189impl fmt::Debug for IntoChars {
3190    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3191        f.debug_tuple("IntoChars").field(&self.as_str()).finish()
3192    }
3193}
3194
3195impl IntoChars {
3196    /// Views the underlying data as a subslice of the original data.
3197    ///
3198    /// # Examples
3199    ///
3200    /// ```
3201    /// #![feature(string_into_chars)]
3202    ///
3203    /// let mut chars = String::from("abc").into_chars();
3204    ///
3205    /// assert_eq!(chars.as_str(), "abc");
3206    /// chars.next();
3207    /// assert_eq!(chars.as_str(), "bc");
3208    /// chars.next();
3209    /// chars.next();
3210    /// assert_eq!(chars.as_str(), "");
3211    /// ```
3212    #[unstable(feature = "string_into_chars", issue = "133125")]
3213    #[must_use]
3214    #[inline]
3215    pub fn as_str(&self) -> &str {
3216        // SAFETY: `bytes` is a valid UTF-8 string.
3217        unsafe { str::from_utf8_unchecked(self.bytes.as_slice()) }
3218    }
3219
3220    /// Consumes the `IntoChars`, returning the remaining string.
3221    ///
3222    /// # Examples
3223    ///
3224    /// ```
3225    /// #![feature(string_into_chars)]
3226    ///
3227    /// let chars = String::from("abc").into_chars();
3228    /// assert_eq!(chars.into_string(), "abc");
3229    ///
3230    /// let mut chars = String::from("def").into_chars();
3231    /// chars.next();
3232    /// assert_eq!(chars.into_string(), "ef");
3233    /// ```
3234    #[cfg(not(no_global_oom_handling))]
3235    #[unstable(feature = "string_into_chars", issue = "133125")]
3236    #[inline]
3237    pub fn into_string(self) -> String {
3238        // Safety: `bytes` are kept in UTF-8 form, only removing whole `char`s at a time.
3239        unsafe { String::from_utf8_unchecked(self.bytes.collect()) }
3240    }
3241
3242    #[inline]
3243    fn iter(&self) -> CharIndices<'_> {
3244        self.as_str().char_indices()
3245    }
3246}
3247
3248#[unstable(feature = "string_into_chars", issue = "133125")]
3249impl Iterator for IntoChars {
3250    type Item = char;
3251
3252    #[inline]
3253    fn next(&mut self) -> Option<char> {
3254        let mut iter = self.iter();
3255        match iter.next() {
3256            None => None,
3257            Some((_, ch)) => {
3258                let offset = iter.offset();
3259                // `offset` is a valid index.
3260                let _ = self.bytes.advance_by(offset);
3261                Some(ch)
3262            }
3263        }
3264    }
3265
3266    #[inline]
3267    fn count(self) -> usize {
3268        self.iter().count()
3269    }
3270
3271    #[inline]
3272    fn size_hint(&self) -> (usize, Option<usize>) {
3273        self.iter().size_hint()
3274    }
3275
3276    #[inline]
3277    fn last(mut self) -> Option<char> {
3278        self.next_back()
3279    }
3280}
3281
3282#[unstable(feature = "string_into_chars", issue = "133125")]
3283impl DoubleEndedIterator for IntoChars {
3284    #[inline]
3285    fn next_back(&mut self) -> Option<char> {
3286        let len = self.as_str().len();
3287        let mut iter = self.iter();
3288        match iter.next_back() {
3289            None => None,
3290            Some((idx, ch)) => {
3291                // `idx` is a valid index.
3292                let _ = self.bytes.advance_back_by(len - idx);
3293                Some(ch)
3294            }
3295        }
3296    }
3297}
3298
3299#[unstable(feature = "string_into_chars", issue = "133125")]
3300impl FusedIterator for IntoChars {}
3301
3302/// A draining iterator for `String`.
3303///
3304/// This struct is created by the [`drain`] method on [`String`]. See its
3305/// documentation for more.
3306///
3307/// [`drain`]: String::drain
3308#[stable(feature = "drain", since = "1.6.0")]
3309pub struct Drain<'a> {
3310    /// Will be used as &'a mut String in the destructor
3311    string: *mut String,
3312    /// Start of part to remove
3313    start: usize,
3314    /// End of part to remove
3315    end: usize,
3316    /// Current remaining range to remove
3317    iter: Chars<'a>,
3318}
3319
3320#[stable(feature = "collection_debug", since = "1.17.0")]
3321impl fmt::Debug for Drain<'_> {
3322    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3323        f.debug_tuple("Drain").field(&self.as_str()).finish()
3324    }
3325}
3326
3327#[stable(feature = "drain", since = "1.6.0")]
3328unsafe impl Sync for Drain<'_> {}
3329#[stable(feature = "drain", since = "1.6.0")]
3330unsafe impl Send for Drain<'_> {}
3331
3332#[stable(feature = "drain", since = "1.6.0")]
3333impl Drop for Drain<'_> {
3334    fn drop(&mut self) {
3335        unsafe {
3336            // Use Vec::drain. "Reaffirm" the bounds checks to avoid
3337            // panic code being inserted again.
3338            let self_vec = (*self.string).as_mut_vec();
3339            if self.start <= self.end && self.end <= self_vec.len() {
3340                self_vec.drain(self.start..self.end);
3341            }
3342        }
3343    }
3344}
3345
3346impl<'a> Drain<'a> {
3347    /// Returns the remaining (sub)string of this iterator as a slice.
3348    ///
3349    /// # Examples
3350    ///
3351    /// ```
3352    /// let mut s = String::from("abc");
3353    /// let mut drain = s.drain(..);
3354    /// assert_eq!(drain.as_str(), "abc");
3355    /// let _ = drain.next().unwrap();
3356    /// assert_eq!(drain.as_str(), "bc");
3357    /// ```
3358    #[must_use]
3359    #[stable(feature = "string_drain_as_str", since = "1.55.0")]
3360    pub fn as_str(&self) -> &str {
3361        self.iter.as_str()
3362    }
3363}
3364
3365#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3366impl<'a> AsRef<str> for Drain<'a> {
3367    fn as_ref(&self) -> &str {
3368        self.as_str()
3369    }
3370}
3371
3372#[stable(feature = "string_drain_as_str", since = "1.55.0")]
3373impl<'a> AsRef<[u8]> for Drain<'a> {
3374    fn as_ref(&self) -> &[u8] {
3375        self.as_str().as_bytes()
3376    }
3377}
3378
3379#[stable(feature = "drain", since = "1.6.0")]
3380impl Iterator for Drain<'_> {
3381    type Item = char;
3382
3383    #[inline]
3384    fn next(&mut self) -> Option<char> {
3385        self.iter.next()
3386    }
3387
3388    fn size_hint(&self) -> (usize, Option<usize>) {
3389        self.iter.size_hint()
3390    }
3391
3392    #[inline]
3393    fn last(mut self) -> Option<char> {
3394        self.next_back()
3395    }
3396}
3397
3398#[stable(feature = "drain", since = "1.6.0")]
3399impl DoubleEndedIterator for Drain<'_> {
3400    #[inline]
3401    fn next_back(&mut self) -> Option<char> {
3402        self.iter.next_back()
3403    }
3404}
3405
3406#[stable(feature = "fused", since = "1.26.0")]
3407impl FusedIterator for Drain<'_> {}
3408
3409#[cfg(not(no_global_oom_handling))]
3410#[stable(feature = "from_char_for_string", since = "1.46.0")]
3411impl From<char> for String {
3412    /// Allocates an owned [`String`] from a single character.
3413    ///
3414    /// # Example
3415    /// ```rust
3416    /// let c: char = 'a';
3417    /// let s: String = String::from(c);
3418    /// assert_eq!("a", &s[..]);
3419    /// ```
3420    #[inline]
3421    fn from(c: char) -> Self {
3422        c.to_string()
3423    }
3424}