1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem::{self, SizedTypeProperties};
use core::ptr::NonNull;
use core::{fmt, ptr};
use super::VecDeque;
use crate::alloc::{Allocator, Global};
/// A draining iterator over the elements of a `VecDeque`.
///
/// This `struct` is created by the [`drain`] method on [`VecDeque`]. See its
/// documentation for more.
///
/// [`drain`]: VecDeque::drain
#[stable(feature = "drain", since = "1.6.0")]
pub struct Drain<
'a,
T: 'a,
#[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
// We can't just use a &mut VecDeque<T, A>, as that would make Drain invariant over T
// and we want it to be covariant instead
deque: NonNull<VecDeque<T, A>>,
// drain_start is stored in deque.len
drain_len: usize,
// index into the logical array, not the physical one (always lies in [0..deque.len))
idx: usize,
// number of elements remaining after dropping the drain
new_len: usize,
remaining: usize,
// Needed to make Drain covariant over T
_marker: PhantomData<&'a T>,
}
impl<'a, T, A: Allocator> Drain<'a, T, A> {
pub(super) unsafe fn new(
deque: &'a mut VecDeque<T, A>,
drain_start: usize,
drain_len: usize,
) -> Self {
let orig_len = mem::replace(&mut deque.len, drain_start);
let new_len = orig_len - drain_len;
Drain {
deque: NonNull::from(deque),
drain_len,
idx: drain_start,
new_len,
remaining: drain_len,
_marker: PhantomData,
}
}
// Only returns pointers to the slices, as that's all we need
// to drop them. May only be called if `self.remaining != 0`.
unsafe fn as_slices(&self) -> (*mut [T], *mut [T]) {
unsafe {
let deque = self.deque.as_ref();
// We know that `self.idx + self.remaining <= deque.len <= usize::MAX`, so this won't overflow.
let logical_remaining_range = self.idx..self.idx + self.remaining;
// SAFETY: `logical_remaining_range` represents the
// range into the logical buffer of elements that
// haven't been drained yet, so they're all initialized,
// and `slice::range(start..end, end) == start..end`,
// so the preconditions for `slice_ranges` are met.
let (a_range, b_range) =
deque.slice_ranges(logical_remaining_range.clone(), logical_remaining_range.end);
(deque.buffer_range(a_range), deque.buffer_range(b_range))
}
}
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain")
.field(&self.drain_len)
.field(&self.idx)
.field(&self.new_len)
.field(&self.remaining)
.finish()
}
}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<T: Sync, A: Allocator + Sync> Sync for Drain<'_, T, A> {}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<T: Send, A: Allocator + Send> Send for Drain<'_, T, A> {}
#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> Drop for Drain<'_, T, A> {
fn drop(&mut self) {
struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);
let guard = DropGuard(self);
if mem::needs_drop::<T>() && guard.0.remaining != 0 {
unsafe {
// SAFETY: We just checked that `self.remaining != 0`.
let (front, back) = guard.0.as_slices();
// since idx is a logical index, we don't need to worry about wrapping.
guard.0.idx += front.len();
guard.0.remaining -= front.len();
ptr::drop_in_place(front);
guard.0.remaining = 0;
ptr::drop_in_place(back);
}
}
// Dropping `guard` handles moving the remaining elements into place.
impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
#[inline]
fn drop(&mut self) {
if mem::needs_drop::<T>() && self.0.remaining != 0 {
unsafe {
// SAFETY: We just checked that `self.remaining != 0`.
let (front, back) = self.0.as_slices();
ptr::drop_in_place(front);
ptr::drop_in_place(back);
}
}
let source_deque = unsafe { self.0.deque.as_mut() };
let drain_len = self.0.drain_len;
let new_len = self.0.new_len;
if T::IS_ZST {
// no need to copy around any memory if T is a ZST
source_deque.len = new_len;
return;
}
let head_len = source_deque.len; // #elements in front of the drain
let tail_len = new_len - head_len; // #elements behind the drain
// Next, we will fill the hole left by the drain with as few writes as possible.
// The code below handles the following control flow and reduces the amount of
// branches under the assumption that `head_len == 0 || tail_len == 0`, i.e.
// draining at the front or at the back of the dequeue is especially common.
//
// H = "head index" = `deque.head`
// h = elements in front of the drain
// d = elements in the drain
// t = elements behind the drain
//
// Note that the buffer may wrap at any point and the wrapping is handled by
// `wrap_copy` and `to_physical_idx`.
//
// Case 1: if `head_len == 0 && tail_len == 0`
// Everything was drained, reset the head index back to 0.
// H
// [ . . . . . d d d d . . . . . ]
// H
// [ . . . . . . . . . . . . . . ]
//
// Case 2: else if `tail_len == 0`
// Don't move data or the head index.
// H
// [ . . . h h h h d d d d . . . ]
// H
// [ . . . h h h h . . . . . . . ]
//
// Case 3: else if `head_len == 0`
// Don't move data, but move the head index.
// H
// [ . . . d d d d t t t t . . . ]
// H
// [ . . . . . . . t t t t . . . ]
//
// Case 4: else if `tail_len <= head_len`
// Move data, but not the head index.
// H
// [ . . h h h h d d d d t t . . ]
// H
// [ . . h h h h t t . . . . . . ]
//
// Case 5: else
// Move data and the head index.
// H
// [ . . h h d d d d t t t t . . ]
// H
// [ . . . . . . h h t t t t . . ]
// When draining at the front (`.drain(..n)`) or at the back (`.drain(n..)`),
// we don't need to copy any data. The number of elements copied would be 0.
if head_len != 0 && tail_len != 0 {
join_head_and_tail_wrapping(source_deque, drain_len, head_len, tail_len);
// Marking this function as cold helps LLVM to eliminate it entirely if
// this branch is never taken.
// We use `#[cold]` instead of `#[inline(never)]`, because inlining this
// function into the general case (`.drain(n..m)`) is fine.
// See `tests/codegen/vecdeque-drain.rs` for a test.
#[cold]
fn join_head_and_tail_wrapping<T, A: Allocator>(
source_deque: &mut VecDeque<T, A>,
drain_len: usize,
head_len: usize,
tail_len: usize,
) {
// Pick whether to move the head or the tail here.
let (src, dst, len);
if head_len < tail_len {
src = source_deque.head;
dst = source_deque.to_physical_idx(drain_len);
len = head_len;
} else {
src = source_deque.to_physical_idx(head_len + drain_len);
dst = source_deque.to_physical_idx(head_len);
len = tail_len;
};
unsafe {
source_deque.wrap_copy(src, dst, len);
}
}
}
if new_len == 0 {
// Special case: If the entire dequeue was drained, reset the head back to 0,
// like `.clear()` does.
source_deque.head = 0;
} else if head_len < tail_len {
// If we moved the head above, then we need to adjust the head index here.
source_deque.head = source_deque.to_physical_idx(drain_len);
}
source_deque.len = new_len;
}
}
}
}
#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
if self.remaining == 0 {
return None;
}
let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx) };
self.idx += 1;
self.remaining -= 1;
Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.remaining;
(len, Some(len))
}
}
#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
#[inline]
fn next_back(&mut self) -> Option<T> {
if self.remaining == 0 {
return None;
}
self.remaining -= 1;
let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx + self.remaining) };
Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
}
}
#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}