1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem::{self, SizedTypeProperties};
use core::ptr::NonNull;
use core::{fmt, ptr};

use super::VecDeque;
use crate::alloc::{Allocator, Global};

/// A draining iterator over the elements of a `VecDeque`.
///
/// This `struct` is created by the [`drain`] method on [`VecDeque`]. See its
/// documentation for more.
///
/// [`drain`]: VecDeque::drain
#[stable(feature = "drain", since = "1.6.0")]
pub struct Drain<
    'a,
    T: 'a,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    // We can't just use a &mut VecDeque<T, A>, as that would make Drain invariant over T
    // and we want it to be covariant instead
    deque: NonNull<VecDeque<T, A>>,
    // drain_start is stored in deque.len
    drain_len: usize,
    // index into the logical array, not the physical one (always lies in [0..deque.len))
    idx: usize,
    // number of elements remaining after dropping the drain
    new_len: usize,
    remaining: usize,
    // Needed to make Drain covariant over T
    _marker: PhantomData<&'a T>,
}

impl<'a, T, A: Allocator> Drain<'a, T, A> {
    pub(super) unsafe fn new(
        deque: &'a mut VecDeque<T, A>,
        drain_start: usize,
        drain_len: usize,
    ) -> Self {
        let orig_len = mem::replace(&mut deque.len, drain_start);
        let new_len = orig_len - drain_len;
        Drain {
            deque: NonNull::from(deque),
            drain_len,
            idx: drain_start,
            new_len,
            remaining: drain_len,
            _marker: PhantomData,
        }
    }

    // Only returns pointers to the slices, as that's all we need
    // to drop them. May only be called if `self.remaining != 0`.
    unsafe fn as_slices(&self) -> (*mut [T], *mut [T]) {
        unsafe {
            let deque = self.deque.as_ref();

            // We know that `self.idx + self.remaining <= deque.len <= usize::MAX`, so this won't overflow.
            let logical_remaining_range = self.idx..self.idx + self.remaining;

            // SAFETY: `logical_remaining_range` represents the
            // range into the logical buffer of elements that
            // haven't been drained yet, so they're all initialized,
            // and `slice::range(start..end, end) == start..end`,
            // so the preconditions for `slice_ranges` are met.
            let (a_range, b_range) =
                deque.slice_ranges(logical_remaining_range.clone(), logical_remaining_range.end);
            (deque.buffer_range(a_range), deque.buffer_range(b_range))
        }
    }
}

#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Drain")
            .field(&self.drain_len)
            .field(&self.idx)
            .field(&self.new_len)
            .field(&self.remaining)
            .finish()
    }
}

#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<T: Sync, A: Allocator + Sync> Sync for Drain<'_, T, A> {}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<T: Send, A: Allocator + Send> Send for Drain<'_, T, A> {}

#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> Drop for Drain<'_, T, A> {
    fn drop(&mut self) {
        struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);

        let guard = DropGuard(self);

        if mem::needs_drop::<T>() && guard.0.remaining != 0 {
            unsafe {
                // SAFETY: We just checked that `self.remaining != 0`.
                let (front, back) = guard.0.as_slices();
                // since idx is a logical index, we don't need to worry about wrapping.
                guard.0.idx += front.len();
                guard.0.remaining -= front.len();
                ptr::drop_in_place(front);
                guard.0.remaining = 0;
                ptr::drop_in_place(back);
            }
        }

        // Dropping `guard` handles moving the remaining elements into place.
        impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
            #[inline]
            fn drop(&mut self) {
                if mem::needs_drop::<T>() && self.0.remaining != 0 {
                    unsafe {
                        // SAFETY: We just checked that `self.remaining != 0`.
                        let (front, back) = self.0.as_slices();
                        ptr::drop_in_place(front);
                        ptr::drop_in_place(back);
                    }
                }

                let source_deque = unsafe { self.0.deque.as_mut() };

                let drain_len = self.0.drain_len;
                let new_len = self.0.new_len;

                if T::IS_ZST {
                    // no need to copy around any memory if T is a ZST
                    source_deque.len = new_len;
                    return;
                }

                let head_len = source_deque.len; // #elements in front of the drain
                let tail_len = new_len - head_len; // #elements behind the drain

                // Next, we will fill the hole left by the drain with as few writes as possible.
                // The code below handles the following control flow and reduces the amount of
                // branches under the assumption that `head_len == 0 || tail_len == 0`, i.e.
                // draining at the front or at the back of the dequeue is especially common.
                //
                // H = "head index" = `deque.head`
                // h = elements in front of the drain
                // d = elements in the drain
                // t = elements behind the drain
                //
                // Note that the buffer may wrap at any point and the wrapping is handled by
                // `wrap_copy` and `to_physical_idx`.
                //
                // Case 1: if `head_len == 0 && tail_len == 0`
                // Everything was drained, reset the head index back to 0.
                //             H
                // [ . . . . . d d d d . . . . . ]
                //   H
                // [ . . . . . . . . . . . . . . ]
                //
                // Case 2: else if `tail_len == 0`
                // Don't move data or the head index.
                //         H
                // [ . . . h h h h d d d d . . . ]
                //         H
                // [ . . . h h h h . . . . . . . ]
                //
                // Case 3: else if `head_len == 0`
                // Don't move data, but move the head index.
                //         H
                // [ . . . d d d d t t t t . . . ]
                //                 H
                // [ . . . . . . . t t t t . . . ]
                //
                // Case 4: else if `tail_len <= head_len`
                // Move data, but not the head index.
                //       H
                // [ . . h h h h d d d d t t . . ]
                //       H
                // [ . . h h h h t t . . . . . . ]
                //
                // Case 5: else
                // Move data and the head index.
                //       H
                // [ . . h h d d d d t t t t . . ]
                //               H
                // [ . . . . . . h h t t t t . . ]

                // When draining at the front (`.drain(..n)`) or at the back (`.drain(n..)`),
                // we don't need to copy any data. The number of elements copied would be 0.
                if head_len != 0 && tail_len != 0 {
                    join_head_and_tail_wrapping(source_deque, drain_len, head_len, tail_len);
                    // Marking this function as cold helps LLVM to eliminate it entirely if
                    // this branch is never taken.
                    // We use `#[cold]` instead of `#[inline(never)]`, because inlining this
                    // function into the general case (`.drain(n..m)`) is fine.
                    // See `tests/codegen/vecdeque-drain.rs` for a test.
                    #[cold]
                    fn join_head_and_tail_wrapping<T, A: Allocator>(
                        source_deque: &mut VecDeque<T, A>,
                        drain_len: usize,
                        head_len: usize,
                        tail_len: usize,
                    ) {
                        // Pick whether to move the head or the tail here.
                        let (src, dst, len);
                        if head_len < tail_len {
                            src = source_deque.head;
                            dst = source_deque.to_physical_idx(drain_len);
                            len = head_len;
                        } else {
                            src = source_deque.to_physical_idx(head_len + drain_len);
                            dst = source_deque.to_physical_idx(head_len);
                            len = tail_len;
                        };

                        unsafe {
                            source_deque.wrap_copy(src, dst, len);
                        }
                    }
                }

                if new_len == 0 {
                    // Special case: If the entire dequeue was drained, reset the head back to 0,
                    // like `.clear()` does.
                    source_deque.head = 0;
                } else if head_len < tail_len {
                    // If we moved the head above, then we need to adjust the head index here.
                    source_deque.head = source_deque.to_physical_idx(drain_len);
                }
                source_deque.len = new_len;
            }
        }
    }
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        if self.remaining == 0 {
            return None;
        }
        let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx) };
        self.idx += 1;
        self.remaining -= 1;
        Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.remaining;
        (len, Some(len))
    }
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        if self.remaining == 0 {
            return None;
        }
        self.remaining -= 1;
        let wrapped_idx = unsafe { self.deque.as_ref().to_physical_idx(self.idx + self.remaining) };
        Some(unsafe { self.deque.as_mut().buffer_read(wrapped_idx) })
    }
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}

#[stable(feature = "fused", since = "1.26.0")]
impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}