1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
//! Utilities for formatting and printing `String`s.
//!
//! This module contains the runtime support for the [`format!`] syntax extension.
//! This macro is implemented in the compiler to emit calls to this module in
//! order to format arguments at runtime into strings.
//!
//! # Usage
//!
//! The [`format!`] macro is intended to be familiar to those coming from C's
//! `printf`/`fprintf` functions or Python's `str.format` function.
//!
//! Some examples of the [`format!`] extension are:
//!
//! ```
//! # #![allow(unused_must_use)]
//! format!("Hello"); // => "Hello"
//! format!("Hello, {}!", "world"); // => "Hello, world!"
//! format!("The number is {}", 1); // => "The number is 1"
//! format!("{:?}", (3, 4)); // => "(3, 4)"
//! format!("{value}", value=4); // => "4"
//! let people = "Rustaceans";
//! format!("Hello {people}!"); // => "Hello Rustaceans!"
//! format!("{} {}", 1, 2); // => "1 2"
//! format!("{:04}", 42); // => "0042" with leading zeros
//! format!("{:#?}", (100, 200)); // => "(
//! // 100,
//! // 200,
//! // )"
//! ```
//!
//! From these, you can see that the first argument is a format string. It is
//! required by the compiler for this to be a string literal; it cannot be a
//! variable passed in (in order to perform validity checking). The compiler
//! will then parse the format string and determine if the list of arguments
//! provided is suitable to pass to this format string.
//!
//! To convert a single value to a string, use the [`to_string`] method. This
//! will use the [`Display`] formatting trait.
//!
//! ## Positional parameters
//!
//! Each formatting argument is allowed to specify which value argument it's
//! referencing, and if omitted it is assumed to be "the next argument". For
//! example, the format string `{} {} {}` would take three parameters, and they
//! would be formatted in the same order as they're given. The format string
//! `{2} {1} {0}`, however, would format arguments in reverse order.
//!
//! Things can get a little tricky once you start intermingling the two types of
//! positional specifiers. The "next argument" specifier can be thought of as an
//! iterator over the argument. Each time a "next argument" specifier is seen,
//! the iterator advances. This leads to behavior like this:
//!
//! ```
//! # #![allow(unused_must_use)]
//! format!("{1} {} {0} {}", 1, 2); // => "2 1 1 2"
//! ```
//!
//! The internal iterator over the argument has not been advanced by the time
//! the first `{}` is seen, so it prints the first argument. Then upon reaching
//! the second `{}`, the iterator has advanced forward to the second argument.
//! Essentially, parameters that explicitly name their argument do not affect
//! parameters that do not name an argument in terms of positional specifiers.
//!
//! A format string is required to use all of its arguments, otherwise it is a
//! compile-time error. You may refer to the same argument more than once in the
//! format string.
//!
//! ## Named parameters
//!
//! Rust itself does not have a Python-like equivalent of named parameters to a
//! function, but the [`format!`] macro is a syntax extension that allows it to
//! leverage named parameters. Named parameters are listed at the end of the
//! argument list and have the syntax:
//!
//! ```text
//! identifier '=' expression
//! ```
//!
//! For example, the following [`format!`] expressions all use named arguments:
//!
//! ```
//! # #![allow(unused_must_use)]
//! format!("{argument}", argument = "test"); // => "test"
//! format!("{name} {}", 1, name = 2); // => "2 1"
//! format!("{a} {c} {b}", a="a", b='b', c=3); // => "a 3 b"
//! ```
//!
//! If a named parameter does not appear in the argument list, `format!` will
//! reference a variable with that name in the current scope.
//!
//! ```
//! # #![allow(unused_must_use)]
//! let argument = 2 + 2;
//! format!("{argument}"); // => "4"
//!
//! fn make_string(a: u32, b: &str) -> String {
//! format!("{b} {a}")
//! }
//! make_string(927, "label"); // => "label 927"
//! ```
//!
//! It is not valid to put positional parameters (those without names) after
//! arguments that have names. Like with positional parameters, it is not
//! valid to provide named parameters that are unused by the format string.
//!
//! # Formatting Parameters
//!
//! Each argument being formatted can be transformed by a number of formatting
//! parameters (corresponding to `format_spec` in [the syntax](#syntax)). These
//! parameters affect the string representation of what's being formatted.
//!
//! ## Width
//!
//! ```
//! // All of these print "Hello x !"
//! println!("Hello {:5}!", "x");
//! println!("Hello {:1$}!", "x", 5);
//! println!("Hello {1:0$}!", 5, "x");
//! println!("Hello {:width$}!", "x", width = 5);
//! let width = 5;
//! println!("Hello {:width$}!", "x");
//! ```
//!
//! This is a parameter for the "minimum width" that the format should take up.
//! If the value's string does not fill up this many characters, then the
//! padding specified by fill/alignment will be used to take up the required
//! space (see below).
//!
//! The value for the width can also be provided as a [`usize`] in the list of
//! parameters by adding a postfix `$`, indicating that the second argument is
//! a [`usize`] specifying the width.
//!
//! Referring to an argument with the dollar syntax does not affect the "next
//! argument" counter, so it's usually a good idea to refer to arguments by
//! position, or use named arguments.
//!
//! ## Fill/Alignment
//!
//! ```
//! assert_eq!(format!("Hello {:<5}!", "x"), "Hello x !");
//! assert_eq!(format!("Hello {:-<5}!", "x"), "Hello x----!");
//! assert_eq!(format!("Hello {:^5}!", "x"), "Hello x !");
//! assert_eq!(format!("Hello {:>5}!", "x"), "Hello x!");
//! ```
//!
//! The optional fill character and alignment is provided normally in conjunction with the
//! [`width`](#width) parameter. It must be defined before `width`, right after the `:`.
//! This indicates that if the value being formatted is smaller than
//! `width` some extra characters will be printed around it.
//! Filling comes in the following variants for different alignments:
//!
//! * `[fill]<` - the argument is left-aligned in `width` columns
//! * `[fill]^` - the argument is center-aligned in `width` columns
//! * `[fill]>` - the argument is right-aligned in `width` columns
//!
//! The default [fill/alignment](#fillalignment) for non-numerics is a space and
//! left-aligned. The
//! default for numeric formatters is also a space character but with right-alignment. If
//! the `0` flag (see below) is specified for numerics, then the implicit fill character is
//! `0`.
//!
//! Note that alignment might not be implemented by some types. In particular, it
//! is not generally implemented for the `Debug` trait. A good way to ensure
//! padding is applied is to format your input, then pad this resulting string
//! to obtain your output:
//!
//! ```
//! println!("Hello {:^15}!", format!("{:?}", Some("hi"))); // => "Hello Some("hi") !"
//! ```
//!
//! ## Sign/`#`/`0`
//!
//! ```
//! assert_eq!(format!("Hello {:+}!", 5), "Hello +5!");
//! assert_eq!(format!("{:#x}!", 27), "0x1b!");
//! assert_eq!(format!("Hello {:05}!", 5), "Hello 00005!");
//! assert_eq!(format!("Hello {:05}!", -5), "Hello -0005!");
//! assert_eq!(format!("{:#010x}!", 27), "0x0000001b!");
//! ```
//!
//! These are all flags altering the behavior of the formatter.
//!
//! * `+` - This is intended for numeric types and indicates that the sign
//! should always be printed. By default only the negative sign of signed values
//! is printed, and the sign of positive or unsigned values is omitted.
//! This flag indicates that the correct sign (`+` or `-`) should always be printed.
//! * `-` - Currently not used
//! * `#` - This flag indicates that the "alternate" form of printing should
//! be used. The alternate forms are:
//! * `#?` - pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
//! * `#x` - precedes the argument with a `0x`
//! * `#X` - precedes the argument with a `0x`
//! * `#b` - precedes the argument with a `0b`
//! * `#o` - precedes the argument with a `0o`
//!
//! See [Formatting traits](#formatting-traits) for a description of what the `?`, `x`, `X`,
//! `b`, and `o` flags do.
//!
//! * `0` - This is used to indicate for integer formats that the padding to `width` should
//! both be done with a `0` character as well as be sign-aware. A format
//! like `{:08}` would yield `00000001` for the integer `1`, while the
//! same format would yield `-0000001` for the integer `-1`. Notice that
//! the negative version has one fewer zero than the positive version.
//! Note that padding zeros are always placed after the sign (if any)
//! and before the digits. When used together with the `#` flag, a similar
//! rule applies: padding zeros are inserted after the prefix but before
//! the digits. The prefix is included in the total width.
//! This flag overrides the [fill character and alignment flag](#fillalignment).
//!
//! ## Precision
//!
//! For non-numeric types, this can be considered a "maximum width". If the resulting string is
//! longer than this width, then it is truncated down to this many characters and that truncated
//! value is emitted with proper `fill`, `alignment` and `width` if those parameters are set.
//!
//! For integral types, this is ignored.
//!
//! For floating-point types, this indicates how many digits after the decimal point should be
//! printed.
//!
//! There are three possible ways to specify the desired `precision`:
//!
//! 1. An integer `.N`:
//!
//! the integer `N` itself is the precision.
//!
//! 2. An integer or name followed by dollar sign `.N$`:
//!
//! use format *argument* `N` (which must be a `usize`) as the precision.
//!
//! 3. An asterisk `.*`:
//!
//! `.*` means that this `{...}` is associated with *two* format inputs rather than one:
//! - If a format string in the fashion of `{:<spec>.*}` is used, then the first input holds
//! the `usize` precision, and the second holds the value to print.
//! - If a format string in the fashion of `{<arg>:<spec>.*}` is used, then the `<arg>` part
//! refers to the value to print, and the `precision` is taken like it was specified with an
//! omitted positional parameter (`{}` instead of `{<arg>:}`).
//!
//! For example, the following calls all print the same thing `Hello x is 0.01000`:
//!
//! ```
//! // Hello {arg 0 ("x")} is {arg 1 (0.01) with precision specified inline (5)}
//! println!("Hello {0} is {1:.5}", "x", 0.01);
//!
//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision specified in arg 0 (5)}
//! println!("Hello {1} is {2:.0$}", 5, "x", 0.01);
//!
//! // Hello {arg 0 ("x")} is {arg 2 (0.01) with precision specified in arg 1 (5)}
//! println!("Hello {0} is {2:.1$}", "x", 5, 0.01);
//!
//! // Hello {next arg -> arg 0 ("x")} is {second of next two args -> arg 2 (0.01) with precision
//! // specified in first of next two args -> arg 1 (5)}
//! println!("Hello {} is {:.*}", "x", 5, 0.01);
//!
//! // Hello {arg 1 ("x")} is {arg 2 (0.01) with precision
//! // specified in next arg -> arg 0 (5)}
//! println!("Hello {1} is {2:.*}", 5, "x", 0.01);
//!
//! // Hello {next arg -> arg 0 ("x")} is {arg 2 (0.01) with precision
//! // specified in next arg -> arg 1 (5)}
//! println!("Hello {} is {2:.*}", "x", 5, 0.01);
//!
//! // Hello {next arg -> arg 0 ("x")} is {arg "number" (0.01) with precision specified
//! // in arg "prec" (5)}
//! println!("Hello {} is {number:.prec$}", "x", prec = 5, number = 0.01);
//! ```
//!
//! While these:
//!
//! ```
//! println!("{}, `{name:.*}` has 3 fractional digits", "Hello", 3, name=1234.56);
//! println!("{}, `{name:.*}` has 3 characters", "Hello", 3, name="1234.56");
//! println!("{}, `{name:>8.*}` has 3 right-aligned characters", "Hello", 3, name="1234.56");
//! ```
//!
//! print three significantly different things:
//!
//! ```text
//! Hello, `1234.560` has 3 fractional digits
//! Hello, `123` has 3 characters
//! Hello, ` 123` has 3 right-aligned characters
//! ```
//!
//! When truncating these values, Rust uses [round half-to-even](https://en.wikipedia.org/wiki/Rounding#Rounding_half_to_even),
//! which is the default rounding mode in IEEE 754.
//! For example,
//!
//! ```
//! print!("{0:.1$e}", 12345, 3);
//! print!("{0:.1$e}", 12355, 3);
//! ```
//!
//! Would return:
//!
//! ```text
//! 1.234e4
//! 1.236e4
//! ```
//!
//! ## Localization
//!
//! In some programming languages, the behavior of string formatting functions
//! depends on the operating system's locale setting. The format functions
//! provided by Rust's standard library do not have any concept of locale and
//! will produce the same results on all systems regardless of user
//! configuration.
//!
//! For example, the following code will always print `1.5` even if the system
//! locale uses a decimal separator other than a dot.
//!
//! ```
//! println!("The value is {}", 1.5);
//! ```
//!
//! # Escaping
//!
//! The literal characters `{` and `}` may be included in a string by preceding
//! them with the same character. For example, the `{` character is escaped with
//! `{{` and the `}` character is escaped with `}}`.
//!
//! ```
//! assert_eq!(format!("Hello {{}}"), "Hello {}");
//! assert_eq!(format!("{{ Hello"), "{ Hello");
//! ```
//!
//! # Syntax
//!
//! To summarize, here you can find the full grammar of format strings.
//! The syntax for the formatting language used is drawn from other languages,
//! so it should not be too alien. Arguments are formatted with Python-like
//! syntax, meaning that arguments are surrounded by `{}` instead of the C-like
//! `%`. The actual grammar for the formatting syntax is:
//!
//! ```text
//! format_string := text [ maybe_format text ] *
//! maybe_format := '{' '{' | '}' '}' | format
//! format := '{' [ argument ] [ ':' format_spec ] [ ws ] * '}'
//! argument := integer | identifier
//!
//! format_spec := [[fill]align][sign]['#']['0'][width]['.' precision]type
//! fill := character
//! align := '<' | '^' | '>'
//! sign := '+' | '-'
//! width := count
//! precision := count | '*'
//! type := '' | '?' | 'x?' | 'X?' | identifier
//! count := parameter | integer
//! parameter := argument '$'
//! ```
//! In the above grammar,
//! - `text` must not contain any `'{'` or `'}'` characters,
//! - `ws` is any character for which [`char::is_whitespace`] returns `true`, has no semantic
//! meaning and is completely optional,
//! - `integer` is a decimal integer that may contain leading zeroes and must fit into an `usize` and
//! - `identifier` is an `IDENTIFIER_OR_KEYWORD` (not an `IDENTIFIER`) as defined by the [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html).
//!
//! # Formatting traits
//!
//! When requesting that an argument be formatted with a particular type, you
//! are actually requesting that an argument ascribes to a particular trait.
//! This allows multiple actual types to be formatted via `{:x}` (like [`i8`] as
//! well as [`isize`]). The current mapping of types to traits is:
//!
//! * *nothing* ⇒ [`Display`]
//! * `?` ⇒ [`Debug`]
//! * `x?` ⇒ [`Debug`] with lower-case hexadecimal integers
//! * `X?` ⇒ [`Debug`] with upper-case hexadecimal integers
//! * `o` ⇒ [`Octal`]
//! * `x` ⇒ [`LowerHex`]
//! * `X` ⇒ [`UpperHex`]
//! * `p` ⇒ [`Pointer`]
//! * `b` ⇒ [`Binary`]
//! * `e` ⇒ [`LowerExp`]
//! * `E` ⇒ [`UpperExp`]
//!
//! What this means is that any type of argument which implements the
//! [`fmt::Binary`][`Binary`] trait can then be formatted with `{:b}`. Implementations
//! are provided for these traits for a number of primitive types by the
//! standard library as well. If no format is specified (as in `{}` or `{:6}`),
//! then the format trait used is the [`Display`] trait.
//!
//! When implementing a format trait for your own type, you will have to
//! implement a method of the signature:
//!
//! ```
//! # #![allow(dead_code)]
//! # use std::fmt;
//! # struct Foo; // our custom type
//! # impl fmt::Display for Foo {
//! fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//! # write!(f, "testing, testing")
//! # } }
//! ```
//!
//! Your type will be passed as `self` by-reference, and then the function
//! should emit output into the Formatter `f` which implements `fmt::Write`. It is up to each
//! format trait implementation to correctly adhere to the requested formatting parameters.
//! The values of these parameters can be accessed with methods of the
//! [`Formatter`] struct. In order to help with this, the [`Formatter`] struct also
//! provides some helper methods.
//!
//! Additionally, the return value of this function is [`fmt::Result`] which is a
//! type alias of <code>[Result]<(), [std::fmt::Error]></code>. Formatting implementations
//! should ensure that they propagate errors from the [`Formatter`] (e.g., when
//! calling [`write!`]). However, they should never return errors spuriously. That
//! is, a formatting implementation must and may only return an error if the
//! passed-in [`Formatter`] returns an error. This is because, contrary to what
//! the function signature might suggest, string formatting is an infallible
//! operation. This function only returns a [`Result`] because writing to the
//! underlying stream might fail and it must provide a way to propagate the fact
//! that an error has occurred back up the stack.
//!
//! An example of implementing the formatting traits would look
//! like:
//!
//! ```
//! use std::fmt;
//!
//! #[derive(Debug)]
//! struct Vector2D {
//! x: isize,
//! y: isize,
//! }
//!
//! impl fmt::Display for Vector2D {
//! fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//! // The `f` value implements the `Write` trait, which is what the
//! // write! macro is expecting. Note that this formatting ignores the
//! // various flags provided to format strings.
//! write!(f, "({}, {})", self.x, self.y)
//! }
//! }
//!
//! // Different traits allow different forms of output of a type. The meaning
//! // of this format is to print the magnitude of a vector.
//! impl fmt::Binary for Vector2D {
//! fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
//! let magnitude = (self.x * self.x + self.y * self.y) as f64;
//! let magnitude = magnitude.sqrt();
//!
//! // Respect the formatting flags by using the helper method
//! // `pad_integral` on the Formatter object. See the method
//! // documentation for details, and the function `pad` can be used
//! // to pad strings.
//! let decimals = f.precision().unwrap_or(3);
//! let string = format!("{magnitude:.decimals$}");
//! f.pad_integral(true, "", &string)
//! }
//! }
//!
//! fn main() {
//! let myvector = Vector2D { x: 3, y: 4 };
//!
//! println!("{myvector}"); // => "(3, 4)"
//! println!("{myvector:?}"); // => "Vector2D {x: 3, y:4}"
//! println!("{myvector:10.3b}"); // => " 5.000"
//! }
//! ```
//!
//! ### `fmt::Display` vs `fmt::Debug`
//!
//! These two formatting traits have distinct purposes:
//!
//! - [`fmt::Display`][`Display`] implementations assert that the type can be faithfully
//! represented as a UTF-8 string at all times. It is **not** expected that
//! all types implement the [`Display`] trait.
//! - [`fmt::Debug`][`Debug`] implementations should be implemented for **all** public types.
//! Output will typically represent the internal state as faithfully as possible.
//! The purpose of the [`Debug`] trait is to facilitate debugging Rust code. In
//! most cases, using `#[derive(Debug)]` is sufficient and recommended.
//!
//! Some examples of the output from both traits:
//!
//! ```
//! assert_eq!(format!("{} {:?}", 3, 4), "3 4");
//! assert_eq!(format!("{} {:?}", 'a', 'b'), "a 'b'");
//! assert_eq!(format!("{} {:?}", "foo\n", "bar\n"), "foo\n \"bar\\n\"");
//! ```
//!
//! # Related macros
//!
//! There are a number of related macros in the [`format!`] family. The ones that
//! are currently implemented are:
//!
//! ```ignore (only-for-syntax-highlight)
//! format! // described above
//! write! // first argument is either a &mut io::Write or a &mut fmt::Write, the destination
//! writeln! // same as write but appends a newline
//! print! // the format string is printed to the standard output
//! println! // same as print but appends a newline
//! eprint! // the format string is printed to the standard error
//! eprintln! // same as eprint but appends a newline
//! format_args! // described below.
//! ```
//!
//! ### `write!`
//!
//! [`write!`] and [`writeln!`] are two macros which are used to emit the format string
//! to a specified stream. This is used to prevent intermediate allocations of
//! format strings and instead directly write the output. Under the hood, this
//! function is actually invoking the [`write_fmt`] function defined on the
//! [`std::io::Write`] and the [`std::fmt::Write`] trait. Example usage is:
//!
//! ```
//! # #![allow(unused_must_use)]
//! use std::io::Write;
//! let mut w = Vec::new();
//! write!(&mut w, "Hello {}!", "world");
//! ```
//!
//! ### `print!`
//!
//! This and [`println!`] emit their output to stdout. Similarly to the [`write!`]
//! macro, the goal of these macros is to avoid intermediate allocations when
//! printing output. Example usage is:
//!
//! ```
//! print!("Hello {}!", "world");
//! println!("I have a newline {}", "character at the end");
//! ```
//! ### `eprint!`
//!
//! The [`eprint!`] and [`eprintln!`] macros are identical to
//! [`print!`] and [`println!`], respectively, except they emit their
//! output to stderr.
//!
//! ### `format_args!`
//!
//! [`format_args!`] is a curious macro used to safely pass around
//! an opaque object describing the format string. This object
//! does not require any heap allocations to create, and it only
//! references information on the stack. Under the hood, all of
//! the related macros are implemented in terms of this. First
//! off, some example usage is:
//!
//! ```
//! # #![allow(unused_must_use)]
//! use std::fmt;
//! use std::io::{self, Write};
//!
//! let mut some_writer = io::stdout();
//! write!(&mut some_writer, "{}", format_args!("print with a {}", "macro"));
//!
//! fn my_fmt_fn(args: fmt::Arguments<'_>) {
//! write!(&mut io::stdout(), "{args}");
//! }
//! my_fmt_fn(format_args!(", or a {} too", "function"));
//! ```
//!
//! The result of the [`format_args!`] macro is a value of type [`fmt::Arguments`].
//! This structure can then be passed to the [`write`] and [`format`] functions
//! inside this module in order to process the format string.
//! The goal of this macro is to even further prevent intermediate allocations
//! when dealing with formatting strings.
//!
//! For example, a logging library could use the standard formatting syntax, but
//! it would internally pass around this structure until it has been determined
//! where output should go to.
//!
//! [`fmt::Result`]: Result "fmt::Result"
//! [Result]: core::result::Result "std::result::Result"
//! [std::fmt::Error]: Error "fmt::Error"
//! [`write`]: write() "fmt::write"
//! [`to_string`]: crate::string::ToString::to_string "ToString::to_string"
//! [`write_fmt`]: ../../std/io/trait.Write.html#method.write_fmt
//! [`std::io::Write`]: ../../std/io/trait.Write.html
//! [`std::fmt::Write`]: ../../std/fmt/trait.Write.html
//! [`print!`]: ../../std/macro.print.html "print!"
//! [`println!`]: ../../std/macro.println.html "println!"
//! [`eprint!`]: ../../std/macro.eprint.html "eprint!"
//! [`eprintln!`]: ../../std/macro.eprintln.html "eprintln!"
//! [`format_args!`]: ../../std/macro.format_args.html "format_args!"
//! [`fmt::Arguments`]: Arguments "fmt::Arguments"
//! [`format`]: format() "fmt::format"
#![stable(feature = "rust1", since = "1.0.0")]
#[stable(feature = "fmt_flags_align", since = "1.28.0")]
pub use core::fmt::Alignment;
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::Error;
#[unstable(feature = "debug_closure_helpers", issue = "117729")]
pub use core::fmt::{from_fn, FromFn};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{write, Arguments};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{Binary, Octal};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{Debug, Display};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{Formatter, Result, Write};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{LowerExp, UpperExp};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::fmt::{LowerHex, Pointer, UpperHex};
#[cfg(not(no_global_oom_handling))]
use crate::string;
/// Takes an [`Arguments`] struct and returns the resulting formatted string.
///
/// The [`Arguments`] instance can be created with the [`format_args!`] macro.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::fmt;
///
/// let s = fmt::format(format_args!("Hello, {}!", "world"));
/// assert_eq!(s, "Hello, world!");
/// ```
///
/// Please note that using [`format!`] might be preferable.
/// Example:
///
/// ```
/// let s = format!("Hello, {}!", "world");
/// assert_eq!(s, "Hello, world!");
/// ```
///
/// [`format_args!`]: core::format_args
/// [`format!`]: crate::format
#[cfg(not(no_global_oom_handling))]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn format(args: Arguments<'_>) -> string::String {
fn format_inner(args: Arguments<'_>) -> string::String {
let capacity = args.estimated_capacity();
let mut output = string::String::with_capacity(capacity);
output
.write_fmt(args)
.expect("a formatting trait implementation returned an error when the underlying stream did not");
output
}
args.as_str().map_or_else(|| format_inner(args), crate::borrow::ToOwned::to_owned)
}