1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//! Memory allocation APIs.
//!
//! In a given program, the standard library has one “global” memory allocator
//! that is used for example by `Box<T>` and `Vec<T>`.
//!
//! Currently the default global allocator is unspecified. Libraries, however,
//! like `cdylib`s and `staticlib`s are guaranteed to use the [`System`] by
//! default.
//!
//! # The `#[global_allocator]` attribute
//!
//! This attribute allows configuring the choice of global allocator.
//! You can use this to implement a completely custom global allocator
//! to route all default allocation requests to a custom object.
//!
//! ```rust
//! use std::alloc::{GlobalAlloc, System, Layout};
//!
//! struct MyAllocator;
//!
//! unsafe impl GlobalAlloc for MyAllocator {
//!     unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
//!         System.alloc(layout)
//!     }
//!
//!     unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
//!         System.dealloc(ptr, layout)
//!     }
//! }
//!
//! #[global_allocator]
//! static GLOBAL: MyAllocator = MyAllocator;
//!
//! fn main() {
//!     // This `Vec` will allocate memory through `GLOBAL` above
//!     let mut v = Vec::new();
//!     v.push(1);
//! }
//! ```
//!
//! The attribute is used on a `static` item whose type implements the
//! [`GlobalAlloc`] trait. This type can be provided by an external library:
//!
//! ```rust,ignore (demonstrates crates.io usage)
//! use jemallocator::Jemalloc;
//!
//! #[global_allocator]
//! static GLOBAL: Jemalloc = Jemalloc;
//!
//! fn main() {}
//! ```
//!
//! The `#[global_allocator]` can only be used once in a crate
//! or its recursive dependencies.

#![deny(unsafe_op_in_unsafe_fn)]
#![stable(feature = "alloc_module", since = "1.28.0")]

use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering};
use core::{hint, mem, ptr};

#[stable(feature = "alloc_module", since = "1.28.0")]
#[doc(inline)]
pub use alloc_crate::alloc::*;

/// The default memory allocator provided by the operating system.
///
/// This is based on `malloc` on Unix platforms and `HeapAlloc` on Windows,
/// plus related functions. However, it is not valid to mix use of the backing
/// system allocator with `System`, as this implementation may include extra
/// work, such as to serve alignment requests greater than the alignment
/// provided directly by the backing system allocator.
///
/// This type implements the [`GlobalAlloc`] trait. Currently the default
/// global allocator is unspecified. Libraries, however, like `cdylib`s and
/// `staticlib`s are guaranteed to use the [`System`] by default and as such
/// work as if they had this definition:
///
/// ```rust
/// use std::alloc::System;
///
/// #[global_allocator]
/// static A: System = System;
///
/// fn main() {
///     let a = Box::new(4); // Allocates from the system allocator.
///     println!("{a}");
/// }
/// ```
///
/// You can also define your own wrapper around `System` if you'd like, such as
/// keeping track of the number of all bytes allocated:
///
/// ```rust
/// use std::alloc::{System, GlobalAlloc, Layout};
/// use std::sync::atomic::{AtomicUsize, Ordering::Relaxed};
///
/// struct Counter;
///
/// static ALLOCATED: AtomicUsize = AtomicUsize::new(0);
///
/// unsafe impl GlobalAlloc for Counter {
///     unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
///         let ret = System.alloc(layout);
///         if !ret.is_null() {
///             ALLOCATED.fetch_add(layout.size(), Relaxed);
///         }
///         ret
///     }
///
///     unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
///         System.dealloc(ptr, layout);
///         ALLOCATED.fetch_sub(layout.size(), Relaxed);
///     }
/// }
///
/// #[global_allocator]
/// static A: Counter = Counter;
///
/// fn main() {
///     println!("allocated bytes before main: {}", ALLOCATED.load(Relaxed));
/// }
/// ```
///
/// It can also be used directly to allocate memory independently of whatever
/// global allocator has been selected for a Rust program. For example if a Rust
/// program opts in to using jemalloc as the global allocator, `System` will
/// still allocate memory using `malloc` and `HeapAlloc`.
#[stable(feature = "alloc_system_type", since = "1.28.0")]
#[derive(Debug, Default, Copy, Clone)]
pub struct System;

impl System {
    #[inline]
    fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
        match layout.size() {
            0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)),
            // SAFETY: `layout` is non-zero in size,
            size => unsafe {
                let raw_ptr = if zeroed {
                    GlobalAlloc::alloc_zeroed(self, layout)
                } else {
                    GlobalAlloc::alloc(self, layout)
                };
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                Ok(NonNull::slice_from_raw_parts(ptr, size))
            },
        }
    }

    // SAFETY: Same as `Allocator::grow`
    #[inline]
    unsafe fn grow_impl(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
        zeroed: bool,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        match old_layout.size() {
            0 => self.alloc_impl(new_layout, zeroed),

            // SAFETY: `new_size` is non-zero as `new_size` is greater than or equal to `old_size`
            // as required by safety conditions and the `old_size == 0` case was handled in the
            // previous match arm. Other conditions must be upheld by the caller
            old_size if old_layout.align() == new_layout.align() => unsafe {
                let new_size = new_layout.size();

                // `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
                hint::assert_unchecked(new_size >= old_layout.size());

                let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size);
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                if zeroed {
                    raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
                }
                Ok(NonNull::slice_from_raw_parts(ptr, new_size))
            },

            // SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
            // both the old and new memory allocation are valid for reads and writes for `old_size`
            // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
            // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
            // for `dealloc` must be upheld by the caller.
            old_size => unsafe {
                let new_ptr = self.alloc_impl(new_layout, zeroed)?;
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size);
                Allocator::deallocate(self, ptr, old_layout);
                Ok(new_ptr)
            },
        }
    }
}

// The Allocator impl checks the layout size to be non-zero and forwards to the GlobalAlloc impl,
// which is in `std::sys::*::alloc`.
#[unstable(feature = "allocator_api", issue = "32838")]
unsafe impl Allocator for System {
    #[inline]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl(layout, false)
    }

    #[inline]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl(layout, true)
    }

    #[inline]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            // SAFETY: `layout` is non-zero in size,
            // other conditions must be upheld by the caller
            unsafe { GlobalAlloc::dealloc(self, ptr.as_ptr(), layout) }
        }
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: all conditions must be upheld by the caller
        unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
    }

    #[inline]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: all conditions must be upheld by the caller
        unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
        );

        match new_layout.size() {
            // SAFETY: conditions must be upheld by the caller
            0 => unsafe {
                Allocator::deallocate(self, ptr, old_layout);
                Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0))
            },

            // SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
            new_size if old_layout.align() == new_layout.align() => unsafe {
                // `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
                hint::assert_unchecked(new_size <= old_layout.size());

                let raw_ptr = GlobalAlloc::realloc(self, ptr.as_ptr(), old_layout, new_size);
                let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
                Ok(NonNull::slice_from_raw_parts(ptr, new_size))
            },

            // SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
            // both the old and new memory allocation are valid for reads and writes for `new_size`
            // bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
            // `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
            // for `dealloc` must be upheld by the caller.
            new_size => unsafe {
                let new_ptr = Allocator::allocate(self, new_layout)?;
                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size);
                Allocator::deallocate(self, ptr, old_layout);
                Ok(new_ptr)
            },
        }
    }
}

static HOOK: AtomicPtr<()> = AtomicPtr::new(ptr::null_mut());

/// Registers a custom allocation error hook, replacing any that was previously registered.
///
/// The allocation error hook is invoked when an infallible memory allocation fails — that is,
/// as a consequence of calling [`handle_alloc_error`] — before the runtime aborts.
///
/// The allocation error hook is a global resource. [`take_alloc_error_hook`] may be used to
/// retrieve a previously registered hook and wrap or discard it.
///
/// # What the provided `hook` function should expect
///
/// The hook function is provided with a [`Layout`] struct which contains information
/// about the allocation that failed.
///
/// The hook function may choose to panic or abort; in the event that it returns normally, this
/// will cause an immediate abort.
///
/// Since [`take_alloc_error_hook`] is a safe function that allows retrieving the hook, the hook
/// function must be _sound_ to call even if no memory allocations were attempted.
///
/// # The default hook
///
/// The default hook, used if [`set_alloc_error_hook`] is never called, prints a message to
/// standard error (and then returns, causing the runtime to abort the process).
/// Compiler options may cause it to panic instead, and the default behavior may be changed
/// to panicking in future versions of Rust.
///
/// # Examples
///
/// ```
/// #![feature(alloc_error_hook)]
///
/// use std::alloc::{Layout, set_alloc_error_hook};
///
/// fn custom_alloc_error_hook(layout: Layout) {
///    panic!("memory allocation of {} bytes failed", layout.size());
/// }
///
/// set_alloc_error_hook(custom_alloc_error_hook);
/// ```
#[unstable(feature = "alloc_error_hook", issue = "51245")]
pub fn set_alloc_error_hook(hook: fn(Layout)) {
    HOOK.store(hook as *mut (), Ordering::Release);
}

/// Unregisters the current allocation error hook, returning it.
///
/// *See also the function [`set_alloc_error_hook`].*
///
/// If no custom hook is registered, the default hook will be returned.
#[unstable(feature = "alloc_error_hook", issue = "51245")]
pub fn take_alloc_error_hook() -> fn(Layout) {
    let hook = HOOK.swap(ptr::null_mut(), Ordering::Acquire);
    if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } }
}

fn default_alloc_error_hook(layout: Layout) {
    extern "Rust" {
        // This symbol is emitted by rustc next to __rust_alloc_error_handler.
        // Its value depends on the -Zoom={panic,abort} compiler option.
        static __rust_alloc_error_handler_should_panic: u8;
    }

    if unsafe { __rust_alloc_error_handler_should_panic != 0 } {
        panic!("memory allocation of {} bytes failed", layout.size());
    } else {
        // This is the default path taken on OOM, and the only path taken on stable with std.
        // Crucially, it does *not* call any user-defined code, and therefore users do not have to
        // worry about allocation failure causing reentrancy issues. That makes it different from
        // the default `__rdl_oom` defined in alloc (i.e., the default alloc error handler that is
        // called when there is no `#[alloc_error_handler]`), which triggers a regular panic and
        // thus can invoke a user-defined panic hook, executing arbitrary user-defined code.
        rtprintpanic!("memory allocation of {} bytes failed\n", layout.size());
    }
}

#[cfg(not(test))]
#[doc(hidden)]
#[alloc_error_handler]
#[unstable(feature = "alloc_internals", issue = "none")]
pub fn rust_oom(layout: Layout) -> ! {
    let hook = HOOK.load(Ordering::Acquire);
    let hook: fn(Layout) =
        if hook.is_null() { default_alloc_error_hook } else { unsafe { mem::transmute(hook) } };
    hook(layout);
    crate::process::abort()
}

#[cfg(not(test))]
#[doc(hidden)]
#[allow(unused_attributes)]
#[unstable(feature = "alloc_internals", issue = "none")]
pub mod __default_lib_allocator {
    use super::{GlobalAlloc, Layout, System};
    // These magic symbol names are used as a fallback for implementing the
    // `__rust_alloc` etc symbols (see `src/liballoc/alloc.rs`) when there is
    // no `#[global_allocator]` attribute.

    // for symbol names src/librustc_ast/expand/allocator.rs
    // for signatures src/librustc_allocator/lib.rs

    // linkage directives are provided as part of the current compiler allocator
    // ABI

    #[rustc_std_internal_symbol]
    pub unsafe extern "C" fn __rdl_alloc(size: usize, align: usize) -> *mut u8 {
        // SAFETY: see the guarantees expected by `Layout::from_size_align` and
        // `GlobalAlloc::alloc`.
        unsafe {
            let layout = Layout::from_size_align_unchecked(size, align);
            System.alloc(layout)
        }
    }

    #[rustc_std_internal_symbol]
    pub unsafe extern "C" fn __rdl_dealloc(ptr: *mut u8, size: usize, align: usize) {
        // SAFETY: see the guarantees expected by `Layout::from_size_align` and
        // `GlobalAlloc::dealloc`.
        unsafe { System.dealloc(ptr, Layout::from_size_align_unchecked(size, align)) }
    }

    #[rustc_std_internal_symbol]
    pub unsafe extern "C" fn __rdl_realloc(
        ptr: *mut u8,
        old_size: usize,
        align: usize,
        new_size: usize,
    ) -> *mut u8 {
        // SAFETY: see the guarantees expected by `Layout::from_size_align` and
        // `GlobalAlloc::realloc`.
        unsafe {
            let old_layout = Layout::from_size_align_unchecked(old_size, align);
            System.realloc(ptr, old_layout, new_size)
        }
    }

    #[rustc_std_internal_symbol]
    pub unsafe extern "C" fn __rdl_alloc_zeroed(size: usize, align: usize) -> *mut u8 {
        // SAFETY: see the guarantees expected by `Layout::from_size_align` and
        // `GlobalAlloc::alloc_zeroed`.
        unsafe {
            let layout = Layout::from_size_align_unchecked(size, align);
            System.alloc_zeroed(layout)
        }
    }
}