1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#[cfg(test)]
mod tests;

use crate::alloc::Allocator;
use crate::cmp;
use crate::io::prelude::*;
use crate::io::{self, BorrowedCursor, ErrorKind, IoSlice, IoSliceMut, SeekFrom};

/// A `Cursor` wraps an in-memory buffer and provides it with a
/// [`Seek`] implementation.
///
/// `Cursor`s are used with in-memory buffers, anything implementing
/// <code>[AsRef]<\[u8]></code>, to allow them to implement [`Read`] and/or [`Write`],
/// allowing these buffers to be used anywhere you might use a reader or writer
/// that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like <code>Cursor<[Vec]\<u8>></code> and
/// <code>Cursor<[&\[u8\]][bytes]></code>.
///
/// # Examples
///
/// We may want to write bytes to a [`File`] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [bytes]: crate::slice "slice"
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(mut writer: W) -> io::Result<()> {
///     writer.seek(SeekFrom::End(-10))?;
///
///     for i in 0..10 {
///         writer.write(&[i])?;
///     }
///
///     // all went well
///     Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = File::create("foo.txt")?;
/// // First, we need to allocate 10 bytes to be able to write into.
/// file.set_len(10)?;
///
/// write_ten_bytes_at_end(&mut file)?;
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
///     // setting up a real File is much slower than an in-memory buffer,
///     // let's use a cursor instead
///     use std::io::Cursor;
///     let mut buff = Cursor::new(vec![0; 15]);
///
///     write_ten_bytes_at_end(&mut buff).unwrap();
///
///     assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
    inner: T,
    pos: u64,
}

impl<T> Cursor<T> {
    /// Creates a new cursor wrapping the provided underlying in-memory buffer.
    ///
    /// Cursor initial position is `0` even if underlying buffer (e.g., [`Vec`])
    /// is not empty. So writing to cursor starts with overwriting [`Vec`]
    /// content, not with appending to it.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    ///
    /// let buff = Cursor::new(Vec::new());
    /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
    /// # force_inference(&buff);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
    pub const fn new(inner: T) -> Cursor<T> {
        Cursor { pos: 0, inner }
    }

    /// Consumes this cursor, returning the underlying value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    ///
    /// let buff = Cursor::new(Vec::new());
    /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
    /// # force_inference(&buff);
    ///
    /// let vec = buff.into_inner();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn into_inner(self) -> T {
        self.inner
    }

    /// Gets a reference to the underlying value in this cursor.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    ///
    /// let buff = Cursor::new(Vec::new());
    /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
    /// # force_inference(&buff);
    ///
    /// let reference = buff.get_ref();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
    pub const fn get_ref(&self) -> &T {
        &self.inner
    }

    /// Gets a mutable reference to the underlying value in this cursor.
    ///
    /// Care should be taken to avoid modifying the internal I/O state of the
    /// underlying value as it may corrupt this cursor's position.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    ///
    /// let mut buff = Cursor::new(Vec::new());
    /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
    /// # force_inference(&buff);
    ///
    /// let reference = buff.get_mut();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner
    }

    /// Returns the current position of this cursor.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    /// use std::io::prelude::*;
    /// use std::io::SeekFrom;
    ///
    /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(buff.position(), 0);
    ///
    /// buff.seek(SeekFrom::Current(2)).unwrap();
    /// assert_eq!(buff.position(), 2);
    ///
    /// buff.seek(SeekFrom::Current(-1)).unwrap();
    /// assert_eq!(buff.position(), 1);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
    pub const fn position(&self) -> u64 {
        self.pos
    }

    /// Sets the position of this cursor.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::Cursor;
    ///
    /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(buff.position(), 0);
    ///
    /// buff.set_position(2);
    /// assert_eq!(buff.position(), 2);
    ///
    /// buff.set_position(4);
    /// assert_eq!(buff.position(), 4);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn set_position(&mut self, pos: u64) {
        self.pos = pos;
    }
}

impl<T> Cursor<T>
where
    T: AsRef<[u8]>,
{
    /// Splits the underlying slice at the cursor position and returns them.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cursor_split)]
    /// use std::io::Cursor;
    ///
    /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(buff.split(), ([].as_slice(), [1, 2, 3, 4, 5].as_slice()));
    ///
    /// buff.set_position(2);
    /// assert_eq!(buff.split(), ([1, 2].as_slice(), [3, 4, 5].as_slice()));
    ///
    /// buff.set_position(6);
    /// assert_eq!(buff.split(), ([1, 2, 3, 4, 5].as_slice(), [].as_slice()));
    /// ```
    #[unstable(feature = "cursor_split", issue = "86369")]
    pub fn split(&self) -> (&[u8], &[u8]) {
        let slice = self.inner.as_ref();
        let pos = self.pos.min(slice.len() as u64);
        slice.split_at(pos as usize)
    }
}

impl<T> Cursor<T>
where
    T: AsMut<[u8]>,
{
    /// Splits the underlying slice at the cursor position and returns them
    /// mutably.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(cursor_split)]
    /// use std::io::Cursor;
    ///
    /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(buff.split_mut(), ([].as_mut_slice(), [1, 2, 3, 4, 5].as_mut_slice()));
    ///
    /// buff.set_position(2);
    /// assert_eq!(buff.split_mut(), ([1, 2].as_mut_slice(), [3, 4, 5].as_mut_slice()));
    ///
    /// buff.set_position(6);
    /// assert_eq!(buff.split_mut(), ([1, 2, 3, 4, 5].as_mut_slice(), [].as_mut_slice()));
    /// ```
    #[unstable(feature = "cursor_split", issue = "86369")]
    pub fn split_mut(&mut self) -> (&mut [u8], &mut [u8]) {
        let slice = self.inner.as_mut();
        let pos = self.pos.min(slice.len() as u64);
        slice.split_at_mut(pos as usize)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Cursor<T>
where
    T: Clone,
{
    #[inline]
    fn clone(&self) -> Self {
        Cursor { inner: self.inner.clone(), pos: self.pos }
    }

    #[inline]
    fn clone_from(&mut self, other: &Self) {
        self.inner.clone_from(&other.inner);
        self.pos = other.pos;
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> io::Seek for Cursor<T>
where
    T: AsRef<[u8]>,
{
    fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
        let (base_pos, offset) = match style {
            SeekFrom::Start(n) => {
                self.pos = n;
                return Ok(n);
            }
            SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
            SeekFrom::Current(n) => (self.pos, n),
        };
        match base_pos.checked_add_signed(offset) {
            Some(n) => {
                self.pos = n;
                Ok(self.pos)
            }
            None => Err(io::const_io_error!(
                ErrorKind::InvalidInput,
                "invalid seek to a negative or overflowing position",
            )),
        }
    }

    fn stream_len(&mut self) -> io::Result<u64> {
        Ok(self.inner.as_ref().len() as u64)
    }

    fn stream_position(&mut self) -> io::Result<u64> {
        Ok(self.pos)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Read for Cursor<T>
where
    T: AsRef<[u8]>,
{
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let n = Read::read(&mut Cursor::split(self).1, buf)?;
        self.pos += n as u64;
        Ok(n)
    }

    fn read_buf(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
        let prev_written = cursor.written();

        Read::read_buf(&mut Cursor::split(self).1, cursor.reborrow())?;

        self.pos += (cursor.written() - prev_written) as u64;

        Ok(())
    }

    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
        let mut nread = 0;
        for buf in bufs {
            let n = self.read(buf)?;
            nread += n;
            if n < buf.len() {
                break;
            }
        }
        Ok(nread)
    }

    fn is_read_vectored(&self) -> bool {
        true
    }

    fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
        let result = Read::read_exact(&mut Cursor::split(self).1, buf);

        match result {
            Ok(_) => self.pos += buf.len() as u64,
            // The only possible error condition is EOF, so place the cursor at "EOF"
            Err(_) => self.pos = self.inner.as_ref().len() as u64,
        }

        result
    }

    fn read_buf_exact(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
        let prev_written = cursor.written();

        let result = Read::read_buf_exact(&mut Cursor::split(self).1, cursor.reborrow());
        self.pos += (cursor.written() - prev_written) as u64;

        result
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        let content = Cursor::split(self).1;
        let len = content.len();
        buf.try_reserve(len)?;
        buf.extend_from_slice(content);
        self.pos += len as u64;

        Ok(len)
    }

    fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
        let content =
            crate::str::from_utf8(Cursor::split(self).1).map_err(|_| io::Error::INVALID_UTF8)?;
        let len = content.len();
        buf.try_reserve(len)?;
        buf.push_str(content);
        self.pos += len as u64;

        Ok(len)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BufRead for Cursor<T>
where
    T: AsRef<[u8]>,
{
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        Ok(Cursor::split(self).1)
    }
    fn consume(&mut self, amt: usize) {
        self.pos += amt as u64;
    }
}

// Non-resizing write implementation
#[inline]
fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
    let pos = cmp::min(*pos_mut, slice.len() as u64);
    let amt = (&mut slice[(pos as usize)..]).write(buf)?;
    *pos_mut += amt as u64;
    Ok(amt)
}

#[inline]
fn slice_write_vectored(
    pos_mut: &mut u64,
    slice: &mut [u8],
    bufs: &[IoSlice<'_>],
) -> io::Result<usize> {
    let mut nwritten = 0;
    for buf in bufs {
        let n = slice_write(pos_mut, slice, buf)?;
        nwritten += n;
        if n < buf.len() {
            break;
        }
    }
    Ok(nwritten)
}

/// Reserves the required space, and pads the vec with 0s if necessary.
fn reserve_and_pad<A: Allocator>(
    pos_mut: &mut u64,
    vec: &mut Vec<u8, A>,
    buf_len: usize,
) -> io::Result<usize> {
    let pos: usize = (*pos_mut).try_into().map_err(|_| {
        io::const_io_error!(
            ErrorKind::InvalidInput,
            "cursor position exceeds maximum possible vector length",
        )
    })?;

    // For safety reasons, we don't want these numbers to overflow
    // otherwise our allocation won't be enough
    let desired_cap = pos.saturating_add(buf_len);
    if desired_cap > vec.capacity() {
        // We want our vec's total capacity
        // to have room for (pos+buf_len) bytes. Reserve allocates
        // based on additional elements from the length, so we need to
        // reserve the difference
        vec.reserve(desired_cap - vec.len());
    }
    // Pad if pos is above the current len.
    if pos > vec.len() {
        let diff = pos - vec.len();
        // Unfortunately, `resize()` would suffice but the optimiser does not
        // realise the `reserve` it does can be eliminated. So we do it manually
        // to eliminate that extra branch
        let spare = vec.spare_capacity_mut();
        debug_assert!(spare.len() >= diff);
        // Safety: we have allocated enough capacity for this.
        // And we are only writing, not reading
        unsafe {
            spare.get_unchecked_mut(..diff).fill(core::mem::MaybeUninit::new(0));
            vec.set_len(pos);
        }
    }

    Ok(pos)
}

/// Writes the slice to the vec without allocating
/// # Safety: vec must have buf.len() spare capacity
unsafe fn vec_write_unchecked<A>(pos: usize, vec: &mut Vec<u8, A>, buf: &[u8]) -> usize
where
    A: Allocator,
{
    debug_assert!(vec.capacity() >= pos + buf.len());
    unsafe { vec.as_mut_ptr().add(pos).copy_from(buf.as_ptr(), buf.len()) };
    pos + buf.len()
}

/// Resizing write implementation for [`Cursor`]
///
/// Cursor is allowed to have a pre-allocated and initialised
/// vector body, but with a position of 0. This means the [`Write`]
/// will overwrite the contents of the vec.
///
/// This also allows for the vec body to be empty, but with a position of N.
/// This means that [`Write`] will pad the vec with 0 initially,
/// before writing anything from that point
fn vec_write<A>(pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf: &[u8]) -> io::Result<usize>
where
    A: Allocator,
{
    let buf_len = buf.len();
    let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;

    // Write the buf then progress the vec forward if necessary
    // Safety: we have ensured that the capacity is available
    // and that all bytes get written up to pos
    unsafe {
        pos = vec_write_unchecked(pos, vec, buf);
        if pos > vec.len() {
            vec.set_len(pos);
        }
    };

    // Bump us forward
    *pos_mut += buf_len as u64;
    Ok(buf_len)
}

/// Resizing write_vectored implementation for [`Cursor`]
///
/// Cursor is allowed to have a pre-allocated and initialised
/// vector body, but with a position of 0. This means the [`Write`]
/// will overwrite the contents of the vec.
///
/// This also allows for the vec body to be empty, but with a position of N.
/// This means that [`Write`] will pad the vec with 0 initially,
/// before writing anything from that point
fn vec_write_vectored<A>(
    pos_mut: &mut u64,
    vec: &mut Vec<u8, A>,
    bufs: &[IoSlice<'_>],
) -> io::Result<usize>
where
    A: Allocator,
{
    // For safety reasons, we don't want this sum to overflow ever.
    // If this saturates, the reserve should panic to avoid any unsound writing.
    let buf_len = bufs.iter().fold(0usize, |a, b| a.saturating_add(b.len()));
    let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;

    // Write the buf then progress the vec forward if necessary
    // Safety: we have ensured that the capacity is available
    // and that all bytes get written up to the last pos
    unsafe {
        for buf in bufs {
            pos = vec_write_unchecked(pos, vec, buf);
        }
        if pos > vec.len() {
            vec.set_len(pos);
        }
    }

    // Bump us forward
    *pos_mut += buf_len as u64;
    Ok(buf_len)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Cursor<&mut [u8]> {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        slice_write(&mut self.pos, self.inner, buf)
    }

    #[inline]
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        slice_write_vectored(&mut self.pos, self.inner, bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[stable(feature = "cursor_mut_vec", since = "1.25.0")]
impl<A> Write for Cursor<&mut Vec<u8, A>>
where
    A: Allocator,
{
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        vec_write(&mut self.pos, self.inner, buf)
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        vec_write_vectored(&mut self.pos, self.inner, bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Write for Cursor<Vec<u8, A>>
where
    A: Allocator,
{
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        vec_write(&mut self.pos, &mut self.inner, buf)
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        vec_write_vectored(&mut self.pos, &mut self.inner, bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[stable(feature = "cursor_box_slice", since = "1.5.0")]
impl<A> Write for Cursor<Box<[u8], A>>
where
    A: Allocator,
{
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        slice_write(&mut self.pos, &mut self.inner, buf)
    }

    #[inline]
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[stable(feature = "cursor_array", since = "1.61.0")]
impl<const N: usize> Write for Cursor<[u8; N]> {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        slice_write(&mut self.pos, &mut self.inner, buf)
    }

    #[inline]
    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}