1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#[cfg(test)]
mod tests;
use crate::fmt;
use crate::sync::{Condvar, Mutex};
/// A barrier enables multiple threads to synchronize the beginning
/// of some computation.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Barrier};
/// use std::thread;
///
/// let n = 10;
/// let mut handles = Vec::with_capacity(n);
/// let barrier = Arc::new(Barrier::new(n));
/// for _ in 0..n {
/// let c = Arc::clone(&barrier);
/// // The same messages will be printed together.
/// // You will NOT see any interleaving.
/// handles.push(thread::spawn(move || {
/// println!("before wait");
/// c.wait();
/// println!("after wait");
/// }));
/// }
/// // Wait for other threads to finish.
/// for handle in handles {
/// handle.join().unwrap();
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Barrier {
lock: Mutex<BarrierState>,
cvar: Condvar,
num_threads: usize,
}
// The inner state of a double barrier
struct BarrierState {
count: usize,
generation_id: usize,
}
/// A `BarrierWaitResult` is returned by [`Barrier::wait()`] when all threads
/// in the [`Barrier`] have rendezvoused.
///
/// # Examples
///
/// ```
/// use std::sync::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BarrierWaitResult(bool);
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for Barrier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Barrier").finish_non_exhaustive()
}
}
impl Barrier {
/// Creates a new barrier that can block a given number of threads.
///
/// A barrier will block `n`-1 threads which call [`wait()`] and then wake
/// up all threads at once when the `n`th thread calls [`wait()`].
///
/// [`wait()`]: Barrier::wait
///
/// # Examples
///
/// ```
/// use std::sync::Barrier;
///
/// let barrier = Barrier::new(10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_barrier", since = "1.78.0")]
#[must_use]
#[inline]
pub const fn new(n: usize) -> Barrier {
Barrier {
lock: Mutex::new(BarrierState { count: 0, generation_id: 0 }),
cvar: Condvar::new(),
num_threads: n,
}
}
/// Blocks the current thread until all threads have rendezvoused here.
///
/// Barriers are re-usable after all threads have rendezvoused once, and can
/// be used continuously.
///
/// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that
/// returns `true` from [`BarrierWaitResult::is_leader()`] when returning
/// from this function, and all other threads will receive a result that
/// will return `false` from [`BarrierWaitResult::is_leader()`].
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Barrier};
/// use std::thread;
///
/// let n = 10;
/// let mut handles = Vec::with_capacity(n);
/// let barrier = Arc::new(Barrier::new(n));
/// for _ in 0..n {
/// let c = Arc::clone(&barrier);
/// // The same messages will be printed together.
/// // You will NOT see any interleaving.
/// handles.push(thread::spawn(move || {
/// println!("before wait");
/// c.wait();
/// println!("after wait");
/// }));
/// }
/// // Wait for other threads to finish.
/// for handle in handles {
/// handle.join().unwrap();
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn wait(&self) -> BarrierWaitResult {
let mut lock = self.lock.lock().unwrap();
let local_gen = lock.generation_id;
lock.count += 1;
if lock.count < self.num_threads {
let _guard =
self.cvar.wait_while(lock, |state| local_gen == state.generation_id).unwrap();
BarrierWaitResult(false)
} else {
lock.count = 0;
lock.generation_id = lock.generation_id.wrapping_add(1);
self.cvar.notify_all();
BarrierWaitResult(true)
}
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl fmt::Debug for BarrierWaitResult {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BarrierWaitResult").field("is_leader", &self.is_leader()).finish()
}
}
impl BarrierWaitResult {
/// Returns `true` if this thread is the "leader thread" for the call to
/// [`Barrier::wait()`].
///
/// Only one thread will have `true` returned from their result, all other
/// threads will have `false` returned.
///
/// # Examples
///
/// ```
/// use std::sync::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// println!("{:?}", barrier_wait_result.is_leader());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub fn is_leader(&self) -> bool {
self.0
}
}