1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;

use cfg_if::cfg_if;

use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::Deref;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sys::sync as sys;
use crate::thread::{current_id, ThreadId};

/// A re-entrant mutual exclusion lock
///
/// This lock will block *other* threads waiting for the lock to become
/// available. The thread which has already locked the mutex can lock it
/// multiple times without blocking, preventing a common source of deadlocks.
///
/// # Examples
///
/// Allow recursively calling a function needing synchronization from within
/// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently
/// implemented):
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::cell::RefCell;
/// use std::sync::ReentrantLock;
///
/// pub struct Log {
///     data: RefCell<String>,
/// }
///
/// impl Log {
///     pub fn append(&self, msg: &str) {
///         self.data.borrow_mut().push_str(msg);
///     }
/// }
///
/// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) });
///
/// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R {
///     let log = LOG.lock();
///     f(&*log)
/// }
///
/// with_log(|log| {
///     log.append("Hello");
///     with_log(|log| log.append(" there!"));
/// });
/// ```
///
// # Implementation details
//
// The 'owner' field tracks which thread has locked the mutex.
//
// We use thread::current_id() as the thread identifier, which is just the
// current thread's ThreadId, so it's unique across the process lifetime.
//
// If `owner` is set to the identifier of the current thread,
// we assume the mutex is already locked and instead of locking it again,
// we increment `lock_count`.
//
// When unlocking, we decrement `lock_count`, and only unlock the mutex when
// it reaches zero.
//
// `lock_count` is protected by the mutex and only accessed by the thread that has
// locked the mutex, so needs no synchronization.
//
// `owner` can be checked by other threads that want to see if they already
// hold the lock, so needs to be atomic. If it compares equal, we're on the
// same thread that holds the mutex and memory access can use relaxed ordering
// since we're not dealing with multiple threads. If it's not equal,
// synchronization is left to the mutex, making relaxed memory ordering for
// the `owner` field fine in all cases.
//
// On systems without 64 bit atomics we also store the address of a TLS variable
// along the 64-bit TID. We then first check that address against the address
// of that variable on the current thread, and only if they compare equal do we
// compare the actual TIDs. Because we only ever read the TID on the same thread
// that it was written on (or a thread sharing the TLS block with that writer thread),
// we don't need to further synchronize the TID accesses, so they can be regular 64-bit
// non-atomic accesses.
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLock<T: ?Sized> {
    mutex: sys::Mutex,
    owner: Tid,
    lock_count: UnsafeCell<u32>,
    data: T,
}

cfg_if!(
    if #[cfg(target_has_atomic = "64")] {
        use crate::sync::atomic::{AtomicU64, Ordering::Relaxed};

        struct Tid(AtomicU64);

        impl Tid {
            const fn new() -> Self {
                Self(AtomicU64::new(0))
            }

            #[inline]
            fn contains(&self, owner: ThreadId) -> bool {
                owner.as_u64().get() == self.0.load(Relaxed)
            }

            #[inline]
            // This is just unsafe to match the API of the Tid type below.
            unsafe fn set(&self, tid: Option<ThreadId>) {
                let value = tid.map_or(0, |tid| tid.as_u64().get());
                self.0.store(value, Relaxed);
            }
        }
    } else {
        /// Returns the address of a TLS variable. This is guaranteed to
        /// be unique across all currently alive threads.
        fn tls_addr() -> usize {
            thread_local! { static X: u8 = const { 0u8 } };

            X.with(|p| <*const u8>::addr(p))
        }

        use crate::sync::atomic::{
            AtomicUsize,
            Ordering,
        };

        struct Tid {
            // When a thread calls `set()`, this value gets updated to
            // the address of a thread local on that thread. This is
            // used as a first check in `contains()`; if the `tls_addr`
            // doesn't match the TLS address of the current thread, then
            // the ThreadId also can't match. Only if the TLS addresses do
            // match do we read out the actual TID.
            // Note also that we can use relaxed atomic operations here, because
            // we only ever read from the tid if `tls_addr` matches the current
            // TLS address. In that case, either the the tid has been set by
            // the current thread, or by a thread that has terminated before
            // the current thread was created. In either case, no further
            // synchronization is needed (as per <https://github.com/rust-lang/miri/issues/3450>)
            tls_addr: AtomicUsize,
            tid: UnsafeCell<u64>,
        }

        unsafe impl Send for Tid {}
        unsafe impl Sync for Tid {}

        impl Tid {
            const fn new() -> Self {
                Self { tls_addr: AtomicUsize::new(0), tid: UnsafeCell::new(0) }
            }

            #[inline]
            // NOTE: This assumes that `owner` is the ID of the current
            // thread, and may spuriously return `false` if that's not the case.
            fn contains(&self, owner: ThreadId) -> bool {
                // SAFETY: See the comments in the struct definition.
                self.tls_addr.load(Ordering::Relaxed) == tls_addr()
                    && unsafe { *self.tid.get() } == owner.as_u64().get()
            }

            #[inline]
            // This may only be called by one thread at a time, and can lead to
            // race conditions otherwise.
            unsafe fn set(&self, tid: Option<ThreadId>) {
                // It's important that we set `self.tls_addr` to 0 if the tid is
                // cleared. Otherwise, there might be race conditions between
                // `set()` and `get()`.
                let tls_addr = if tid.is_some() { tls_addr() } else { 0 };
                let value = tid.map_or(0, |tid| tid.as_u64().get());
                self.tls_addr.store(tls_addr, Ordering::Relaxed);
                unsafe { *self.tid.get() = value };
            }
        }
    }
);

#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {}

// Because of the `UnsafeCell`, these traits are not implemented automatically
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {}

/// An RAII implementation of a "scoped lock" of a re-entrant lock. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] implementation.
///
/// This structure is created by the [`lock`](ReentrantLock::lock) method on
/// [`ReentrantLock`].
///
/// # Mutability
///
/// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not
/// implement [`DerefMut`](crate::ops::DerefMut), because implementation of
/// the trait would violate Rust’s reference aliasing rules. Use interior
/// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate
/// the guarded data.
#[must_use = "if unused the ReentrantLock will immediately unlock"]
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> {
    lock: &'a ReentrantLock<T>,
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {}

#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: ?Sized + Sync> Sync for ReentrantLockGuard<'_, T> {}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> ReentrantLock<T> {
    /// Creates a new re-entrant lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::sync::ReentrantLock;
    ///
    /// let lock = ReentrantLock::new(0);
    /// ```
    pub const fn new(t: T) -> ReentrantLock<T> {
        ReentrantLock {
            mutex: sys::Mutex::new(),
            owner: Tid::new(),
            lock_count: UnsafeCell::new(0),
            data: t,
        }
    }

    /// Consumes this lock, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    ///
    /// use std::sync::ReentrantLock;
    ///
    /// let lock = ReentrantLock::new(0);
    /// assert_eq!(lock.into_inner(), 0);
    /// ```
    pub fn into_inner(self) -> T {
        self.data
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> ReentrantLock<T> {
    /// Acquires the lock, blocking the current thread until it is able to do
    /// so.
    ///
    /// This function will block the caller until it is available to acquire
    /// the lock. Upon returning, the thread is the only thread with the lock
    /// held. When the thread calling this method already holds the lock, the
    /// call succeeds without blocking.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::cell::Cell;
    /// use std::sync::{Arc, ReentrantLock};
    /// use std::thread;
    ///
    /// let lock = Arc::new(ReentrantLock::new(Cell::new(0)));
    /// let c_lock = Arc::clone(&lock);
    ///
    /// thread::spawn(move || {
    ///     c_lock.lock().set(10);
    /// }).join().expect("thread::spawn failed");
    /// assert_eq!(lock.lock().get(), 10);
    /// ```
    pub fn lock(&self) -> ReentrantLockGuard<'_, T> {
        let this_thread = current_id();
        // Safety: We only touch lock_count when we own the inner mutex.
        // Additionally, we only call `self.owner.set()` while holding
        // the inner mutex, so no two threads can call it concurrently.
        unsafe {
            if self.owner.contains(this_thread) {
                self.increment_lock_count().expect("lock count overflow in reentrant mutex");
            } else {
                self.mutex.lock();
                self.owner.set(Some(this_thread));
                debug_assert_eq!(*self.lock_count.get(), 0);
                *self.lock_count.get() = 1;
            }
        }
        ReentrantLockGuard { lock: self }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `ReentrantLock` mutably, no actual locking
    /// needs to take place -- the mutable borrow statically guarantees no locks
    /// exist.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(reentrant_lock)]
    /// use std::sync::ReentrantLock;
    ///
    /// let mut lock = ReentrantLock::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.lock(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.data
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then `None` is returned.
    /// Otherwise, an RAII guard is returned.
    ///
    /// This function does not block.
    pub(crate) fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> {
        let this_thread = current_id();
        // Safety: We only touch lock_count when we own the inner mutex.
        // Additionally, we only call `self.owner.set()` while holding
        // the inner mutex, so no two threads can call it concurrently.
        unsafe {
            if self.owner.contains(this_thread) {
                self.increment_lock_count()?;
                Some(ReentrantLockGuard { lock: self })
            } else if self.mutex.try_lock() {
                self.owner.set(Some(this_thread));
                debug_assert_eq!(*self.lock_count.get(), 0);
                *self.lock_count.get() = 1;
                Some(ReentrantLockGuard { lock: self })
            } else {
                None
            }
        }
    }

    unsafe fn increment_lock_count(&self) -> Option<()> {
        unsafe {
            *self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?;
        }
        Some(())
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_struct("ReentrantLock");
        match self.try_lock() {
            Some(v) => d.field("data", &&*v),
            None => d.field("data", &format_args!("<locked>")),
        };
        d.finish_non_exhaustive()
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: Default> Default for ReentrantLock<T> {
    fn default() -> Self {
        Self::new(T::default())
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> From<T> for ReentrantLock<T> {
    fn from(t: T) -> Self {
        Self::new(t)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.lock.data
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> {
    #[inline]
    fn drop(&mut self) {
        // Safety: We own the lock.
        unsafe {
            *self.lock.lock_count.get() -= 1;
            if *self.lock.lock_count.get() == 0 {
                self.lock.owner.set(None);
                self.lock.mutex.unlock();
            }
        }
    }
}