1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use cfg_if::cfg_if;
use crate::cell::UnsafeCell;
use crate::fmt;
use crate::ops::Deref;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sys::sync as sys;
use crate::thread::{current_id, ThreadId};
/// A re-entrant mutual exclusion lock
///
/// This lock will block *other* threads waiting for the lock to become
/// available. The thread which has already locked the mutex can lock it
/// multiple times without blocking, preventing a common source of deadlocks.
///
/// # Examples
///
/// Allow recursively calling a function needing synchronization from within
/// a callback (this is how [`StdoutLock`](crate::io::StdoutLock) is currently
/// implemented):
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::cell::RefCell;
/// use std::sync::ReentrantLock;
///
/// pub struct Log {
/// data: RefCell<String>,
/// }
///
/// impl Log {
/// pub fn append(&self, msg: &str) {
/// self.data.borrow_mut().push_str(msg);
/// }
/// }
///
/// static LOG: ReentrantLock<Log> = ReentrantLock::new(Log { data: RefCell::new(String::new()) });
///
/// pub fn with_log<R>(f: impl FnOnce(&Log) -> R) -> R {
/// let log = LOG.lock();
/// f(&*log)
/// }
///
/// with_log(|log| {
/// log.append("Hello");
/// with_log(|log| log.append(" there!"));
/// });
/// ```
///
// # Implementation details
//
// The 'owner' field tracks which thread has locked the mutex.
//
// We use thread::current_id() as the thread identifier, which is just the
// current thread's ThreadId, so it's unique across the process lifetime.
//
// If `owner` is set to the identifier of the current thread,
// we assume the mutex is already locked and instead of locking it again,
// we increment `lock_count`.
//
// When unlocking, we decrement `lock_count`, and only unlock the mutex when
// it reaches zero.
//
// `lock_count` is protected by the mutex and only accessed by the thread that has
// locked the mutex, so needs no synchronization.
//
// `owner` can be checked by other threads that want to see if they already
// hold the lock, so needs to be atomic. If it compares equal, we're on the
// same thread that holds the mutex and memory access can use relaxed ordering
// since we're not dealing with multiple threads. If it's not equal,
// synchronization is left to the mutex, making relaxed memory ordering for
// the `owner` field fine in all cases.
//
// On systems without 64 bit atomics we also store the address of a TLS variable
// along the 64-bit TID. We then first check that address against the address
// of that variable on the current thread, and only if they compare equal do we
// compare the actual TIDs. Because we only ever read the TID on the same thread
// that it was written on (or a thread sharing the TLS block with that writer thread),
// we don't need to further synchronize the TID accesses, so they can be regular 64-bit
// non-atomic accesses.
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLock<T: ?Sized> {
mutex: sys::Mutex,
owner: Tid,
lock_count: UnsafeCell<u32>,
data: T,
}
cfg_if!(
if #[cfg(target_has_atomic = "64")] {
use crate::sync::atomic::{AtomicU64, Ordering::Relaxed};
struct Tid(AtomicU64);
impl Tid {
const fn new() -> Self {
Self(AtomicU64::new(0))
}
#[inline]
fn contains(&self, owner: ThreadId) -> bool {
owner.as_u64().get() == self.0.load(Relaxed)
}
#[inline]
// This is just unsafe to match the API of the Tid type below.
unsafe fn set(&self, tid: Option<ThreadId>) {
let value = tid.map_or(0, |tid| tid.as_u64().get());
self.0.store(value, Relaxed);
}
}
} else {
/// Returns the address of a TLS variable. This is guaranteed to
/// be unique across all currently alive threads.
fn tls_addr() -> usize {
thread_local! { static X: u8 = const { 0u8 } };
X.with(|p| <*const u8>::addr(p))
}
use crate::sync::atomic::{
AtomicUsize,
Ordering,
};
struct Tid {
// When a thread calls `set()`, this value gets updated to
// the address of a thread local on that thread. This is
// used as a first check in `contains()`; if the `tls_addr`
// doesn't match the TLS address of the current thread, then
// the ThreadId also can't match. Only if the TLS addresses do
// match do we read out the actual TID.
// Note also that we can use relaxed atomic operations here, because
// we only ever read from the tid if `tls_addr` matches the current
// TLS address. In that case, either the the tid has been set by
// the current thread, or by a thread that has terminated before
// the current thread was created. In either case, no further
// synchronization is needed (as per <https://github.com/rust-lang/miri/issues/3450>)
tls_addr: AtomicUsize,
tid: UnsafeCell<u64>,
}
unsafe impl Send for Tid {}
unsafe impl Sync for Tid {}
impl Tid {
const fn new() -> Self {
Self { tls_addr: AtomicUsize::new(0), tid: UnsafeCell::new(0) }
}
#[inline]
// NOTE: This assumes that `owner` is the ID of the current
// thread, and may spuriously return `false` if that's not the case.
fn contains(&self, owner: ThreadId) -> bool {
// SAFETY: See the comments in the struct definition.
self.tls_addr.load(Ordering::Relaxed) == tls_addr()
&& unsafe { *self.tid.get() } == owner.as_u64().get()
}
#[inline]
// This may only be called by one thread at a time, and can lead to
// race conditions otherwise.
unsafe fn set(&self, tid: Option<ThreadId>) {
// It's important that we set `self.tls_addr` to 0 if the tid is
// cleared. Otherwise, there might be race conditions between
// `set()` and `get()`.
let tls_addr = if tid.is_some() { tls_addr() } else { 0 };
let value = tid.map_or(0, |tid| tid.as_u64().get());
self.tls_addr.store(tls_addr, Ordering::Relaxed);
unsafe { *self.tid.get() = value };
}
}
}
);
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Send for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: Send + ?Sized> Sync for ReentrantLock<T> {}
// Because of the `UnsafeCell`, these traits are not implemented automatically
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: UnwindSafe + ?Sized> UnwindSafe for ReentrantLock<T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: RefUnwindSafe + ?Sized> RefUnwindSafe for ReentrantLock<T> {}
/// An RAII implementation of a "scoped lock" of a re-entrant lock. When this
/// structure is dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] implementation.
///
/// This structure is created by the [`lock`](ReentrantLock::lock) method on
/// [`ReentrantLock`].
///
/// # Mutability
///
/// Unlike [`MutexGuard`](super::MutexGuard), `ReentrantLockGuard` does not
/// implement [`DerefMut`](crate::ops::DerefMut), because implementation of
/// the trait would violate Rust’s reference aliasing rules. Use interior
/// mutability (usually [`RefCell`](crate::cell::RefCell)) in order to mutate
/// the guarded data.
#[must_use = "if unused the ReentrantLock will immediately unlock"]
#[unstable(feature = "reentrant_lock", issue = "121440")]
pub struct ReentrantLockGuard<'a, T: ?Sized + 'a> {
lock: &'a ReentrantLock<T>,
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> !Send for ReentrantLockGuard<'_, T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
unsafe impl<T: ?Sized + Sync> Sync for ReentrantLockGuard<'_, T> {}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> ReentrantLock<T> {
/// Creates a new re-entrant lock in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::sync::ReentrantLock;
///
/// let lock = ReentrantLock::new(0);
/// ```
pub const fn new(t: T) -> ReentrantLock<T> {
ReentrantLock {
mutex: sys::Mutex::new(),
owner: Tid::new(),
lock_count: UnsafeCell::new(0),
data: t,
}
}
/// Consumes this lock, returning the underlying data.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
///
/// use std::sync::ReentrantLock;
///
/// let lock = ReentrantLock::new(0);
/// assert_eq!(lock.into_inner(), 0);
/// ```
pub fn into_inner(self) -> T {
self.data
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> ReentrantLock<T> {
/// Acquires the lock, blocking the current thread until it is able to do
/// so.
///
/// This function will block the caller until it is available to acquire
/// the lock. Upon returning, the thread is the only thread with the lock
/// held. When the thread calling this method already holds the lock, the
/// call succeeds without blocking.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::cell::Cell;
/// use std::sync::{Arc, ReentrantLock};
/// use std::thread;
///
/// let lock = Arc::new(ReentrantLock::new(Cell::new(0)));
/// let c_lock = Arc::clone(&lock);
///
/// thread::spawn(move || {
/// c_lock.lock().set(10);
/// }).join().expect("thread::spawn failed");
/// assert_eq!(lock.lock().get(), 10);
/// ```
pub fn lock(&self) -> ReentrantLockGuard<'_, T> {
let this_thread = current_id();
// Safety: We only touch lock_count when we own the inner mutex.
// Additionally, we only call `self.owner.set()` while holding
// the inner mutex, so no two threads can call it concurrently.
unsafe {
if self.owner.contains(this_thread) {
self.increment_lock_count().expect("lock count overflow in reentrant mutex");
} else {
self.mutex.lock();
self.owner.set(Some(this_thread));
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
}
}
ReentrantLockGuard { lock: self }
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `ReentrantLock` mutably, no actual locking
/// needs to take place -- the mutable borrow statically guarantees no locks
/// exist.
///
/// # Examples
///
/// ```
/// #![feature(reentrant_lock)]
/// use std::sync::ReentrantLock;
///
/// let mut lock = ReentrantLock::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
&mut self.data
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `None` is returned.
/// Otherwise, an RAII guard is returned.
///
/// This function does not block.
pub(crate) fn try_lock(&self) -> Option<ReentrantLockGuard<'_, T>> {
let this_thread = current_id();
// Safety: We only touch lock_count when we own the inner mutex.
// Additionally, we only call `self.owner.set()` while holding
// the inner mutex, so no two threads can call it concurrently.
unsafe {
if self.owner.contains(this_thread) {
self.increment_lock_count()?;
Some(ReentrantLockGuard { lock: self })
} else if self.mutex.try_lock() {
self.owner.set(Some(this_thread));
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
Some(ReentrantLockGuard { lock: self })
} else {
None
}
}
}
unsafe fn increment_lock_count(&self) -> Option<()> {
unsafe {
*self.lock_count.get() = (*self.lock_count.get()).checked_add(1)?;
}
Some(())
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLock<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("ReentrantLock");
match self.try_lock() {
Some(v) => d.field("data", &&*v),
None => d.field("data", &format_args!("<locked>")),
};
d.finish_non_exhaustive()
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: Default> Default for ReentrantLock<T> {
fn default() -> Self {
Self::new(T::default())
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T> From<T> for ReentrantLock<T> {
fn from(t: T) -> Self {
Self::new(t)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Deref for ReentrantLockGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
&self.lock.data
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for ReentrantLockGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: fmt::Display + ?Sized> fmt::Display for ReentrantLockGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
#[unstable(feature = "reentrant_lock", issue = "121440")]
impl<T: ?Sized> Drop for ReentrantLockGuard<'_, T> {
#[inline]
fn drop(&mut self) {
// Safety: We own the lock.
unsafe {
*self.lock.lock_count.get() -= 1;
if *self.lock.lock_count.get() == 0 {
self.lock.owner.set(None);
self.lock.mutex.unlock();
}
}
}
}